skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Unusual superconductivity in the topological nodal-line semimetal candidate Sn x NbSe 2-δ
Abstract We report the superconductivity of the topological nodal-line semimetal candidate Sn x NbSe 2- δ with a noncentrosymmetric crystal structure. The superconducting transition temperature T c of Sn x NbSe 2- δ drastically varies with the Sn concentration x and the Se deficiency δ , and reaches 12 K, relatively higher than those of known topological superconductors. The upper critical field of this compound shows unusual temperature dependence, inconsistent with the WHH theory for conventional type-II superconductors. In a low-T c sample, the zero-temperature limit of the upper critical field parallel to the ab plane exceeds the Pauli paramagnetic limit estimated from the simple BCS weak coupling model by a factor of ∼ 2, suggestive of unusual superconductivity stabilized in Sn x NbSe 2- δ . Together with the robust superconductivity against disorder, these observations indicate that Sn x NbSe 2- δ is a promising candidate to explore topological superconductivity.  more » « less
Award ID(s):
1944975
PAR ID:
10326010
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Physics: Conference Series
Volume:
2164
Issue:
1
ISSN:
1742-6588
Page Range / eLocation ID:
012008
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Leveraging the reciprocal-space proximity effect between superconducting bulk and topological surface states (TSSs) offers a promising way to topological superconductivity. However, elucidating the mutual influence of bulk and TSSs on topological superconductivity remains a challenge. Here, we report pioneering transport evidence of a thickness-dependent transition from conventional to unconventional superconductivity in 2M-phase WS2 (2M-WS2). As the sample thickness reduces, we see clear changes in key superconducting metrics, including critical temperature, critical current, and carrier density. Notably, while thick 2M-WS2 samples show conventional superconductivity, with an in-plane (IP) upper critical field constrained by the Pauli limit, samples under 20 nm exhibit a pronounced IP critical field enhancement, inversely correlated with 2D carrier density. This marks a distinct crossover to unconventional superconductivity with strong spin-orbit-parity coupling. Our findings underscore the crucial role of sample thickness in accessing topological states in 2D topological superconductors, offering pivotal insights into future studies of topological superconductivity. 
    more » « less
  2. The interface between two different materials can show unexpected quantum phenomena. In this study, we used molecular beam epitaxy to synthesize heterostructures formed by stacking together two magnetic materials, a ferromagnetic topological insulator (TI) and an antiferromagnetic iron chalcogenide (FeTe). We observed emergent interface-induced superconductivity in these heterostructures and demonstrated the co-occurrence of superconductivity, ferromagnetism, and topological band structure in the magnetic TI layer—the three essential ingredients of chiral topological superconductivity (TSC). The unusual coexistence of ferromagnetism and superconductivity is accompanied by a high upper critical magnetic field that exceeds the Pauli paramagnetic limit for conventional superconductors at low temperatures. These magnetic TI/FeTe heterostructures with robust superconductivity and atomically sharp interfaces provide an ideal wafer-scale platform for the exploration of chiral TSC and Majorana physics. 
    more » « less
  3. Iron-chalcogenide superconductors FeSe1−xSxpossess unique electronic properties such as nonmagnetic nematic order and its quantum critical point. The nature of superconductivity with such nematicity is important for understanding the mechanism of unconventional superconductivity. A recent theory suggested the possible emergence of a fundamentally new class of superconductivity with the so-called Bogoliubov Fermi surfaces (BFSs) in this system. However, such an ultranodal pair state requires broken time-reversal symmetry (TRS) in the superconducting state, which has not been observed experimentally. Here, we report muon spin relaxation (μSR) measurements in FeSe1−xSxsuperconductors for0≤x≤0.22covering both orthorhombic (nematic) and tetragonal phases. We find that the zero-field muon relaxation rate is enhanced below the superconducting transition temperatureTcfor all compositions, indicating that the superconducting state breaks TRS both in the nematic and tetragonal phases. Moreover, the transverse-fieldμSR measurements reveal that the superfluid density shows an unexpected and substantial reduction in the tetragonal phase (x>0.17). This implies that a significant fraction of electrons remain unpaired in the zero-temperature limit, which cannot be explained by the known unconventional superconducting states with point or line nodes. The TRS breaking and the suppressed superfluid density in the tetragonal phase, together with the reported enhanced zero-energy excitations, are consistent with the ultranodal pair state with BFSs. The present results reveal two different superconducting states with broken TRS separated by the nematic critical point in FeSe1−xSx, which calls for the theory of microscopic origins that account for the relation between nematicity and superconductivity. 
    more » « less
  4. The recent theory-driven discovery of a class of clathrate hydrides (e.g., CaH6, YH6, YH9, and LaH10) with superconducting critical temperatures (Tc) well above 200 K has opened the prospects for “hot” superconductivity above room temperature under pressure. Recent efforts focus on the search for superconductors among ternary hydrides that accommodate more diverse material types and configurations compared to binary hydrides. Through extensive computational searches, we report the prediction of a unique class of thermodynamically stable clathrate hydrides structures consisting of two previously unreported H24and H30hydrogen clathrate cages at megabar pressures. Among these phases, LaSc2H24shows potential hot superconductivity at the thermodynamically stable pressure range of 167 to 300 GPa, with calculatedTcs up to 331 K at 250 GPa and 316 K at 167 GPa when the important effects of anharmonicity are included. The very high critical temperatures are attributed to an unusually large hydrogen-derived density of states at the Fermi level arising from the newly reported peculiar H30as well as H24cages in the structure. Our predicted introduction of Sc in the La–H system is expected to facilitate future design and realization of hot superconductors in ternary clathrate superhydrides. 
    more » « less
  5. An understanding of the normal state in the high-temperature superconducting cuprates is crucial to the ultimate understanding of the long-standing problem of the origin of the superconductivity itself. This so-called “strange metal” state is thought to be associated with a quantum critical point (QCP) hidden beneath the superconductivity. In electron-doped cuprates—in contrast to hole-doped cuprates—it is possible to access the normal state at very low temperatures and low magnetic fields to study this putative QCP and to probe the T ➔ 0 K state of these materials. We report measurements of the low-temperature normal-state magnetoresistance (MR) of the n-type cuprate system La 2− x Ce x CuO 4 and find that it is characterized by a linear-in-field behavior, which follows a scaling relation with applied field and temperature, for doping ( x ) above the putative QCP ( x = 0.14). The magnitude of the unconventional linear MR decreases as T c decreases and goes to zero at the end of the superconducting dome ( x ~ 0.175) above which a conventional quadratic MR is found. These results show that there is a strong correlation between the quantum critical excitations of the strange metal state and the high- T c superconductivity. 
    more » « less