skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The genomics of mimicry: Gene expression throughout development provides insights into convergent and divergent phenotypes in a Müllerian mimicry system
A common goal in evolutionary biology is to discern the mechanisms that produce the astounding diversity of morphologies seen across the tree of life. Aposematic species, those with a conspicuous phenotype coupled with some form of defence, are excellent models to understand the link between vivid colour pattern variations, the natural selection shaping it, and the underlying genetic mechanisms underpinning this variation. Mimicry systems in which multiple species share the same conspicuous phenotype can provide an even better model for understanding the mechanisms of colour production in aposematic species, especially if comimics have divergent evolutionary histories. Here we investigate the genetic mechanisms by which vivid colour and pattern are produced in a Müllerian mimicry complex of poison frogs. We did this by first assembling a high-quality de novo genome assembly for the mimic poison frog Ranitomeya imitator. This assembled genome is 6.8 Gbp in size, with a contig N50 of 300 Kbp R. imitator and two colour morphs from both Ranitomeya fantastica and R. variabilis which R. imitator mimics. We identified a large number of pigmentation and patterning genes that are differentially expressed throughout development, many of them related to melanocyte development, melanin synthesis, iridophore development and guanine synthesis. Polytypic differences within species may be the result of differences in expression and/or timing of expression, whereas convergence for colour pattern between species does not appear to be due to the same changes in gene expression. In addition, we identify the pteridine synthesis pathway (including genes such as qdpr and xdh) as a key driver of the variation in colour between morphs of these species. Finally, we hypothesize that genes in the keratin family are important for producing different structural colours within these frogs.  more » « less
Award ID(s):
1655336
PAR ID:
10326026
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Molecular ecology
Volume:
30
Issue:
16
ISSN:
0962-1083
Page Range / eLocation ID:
4039-4061
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A common goal in evolutionary biology is to discern the mechanisms that produce the astounding diversity of morphologies seen across the tree of life. Aposematic species, those with a conspicuous phenotype coupled with some form of defence, are excellent models to understand the link between vivid colour pattern variations, the natural selection shaping it, and the underlying genetic mechanisms underpinning this variation. Mimicry systems in which multiple species share the same conspicuous phenotype can provide an even better model for understanding the mechanisms of colour production in aposematic species, especially if comimics have divergent evolutionary histories. Here we investigate the genetic mechanisms by which vivid colour and pattern are produced in a Müllerian mimicry complex of poison frogs. We did this by first assembling a high‐qualityde novogenome assembly for the mimic poison frogRanitomeya imitator. This assembled genome is 6.8 Gbp in size, with a contig N50 of 300 KbpR. imitatorand two colour morphs from bothRanitomeya fantasticaandR. variabiliswhichR. imitatormimics. We identified a large number of pigmentation and patterning genes that are differentially expressed throughout development, many of them related to melanocyte development, melanin synthesis, iridophore development and guanine synthesis. Polytypic differences within species may be the result of differences in expression and/or timing of expression, whereas convergence for colour pattern between species does not appear to be due to the same changes in gene expression. In addition, we identify the pteridine synthesis pathway (including genes such asqdprandxdh) as a key driver of the variation in colour between morphs of these species. Finally, we hypothesize that genes in the keratin family are important for producing different structural colours within these frogs. 
    more » « less
  2. Abstract We report preliminary evidence of a symbiotic parabasalian protist in the guts of Peruvian mimic poison frog (Ranitomeya imitator) tadpoles. This species has biparental care and egg-feeding of tadpoles, while the relatedR. variabilisconsumes the ancestral detritus diet in their nursery pools. Each species’ diet was experimentally switched, in the field and lab. Analyses of gut gene expression revealed elevated expression of proteases in theR. imitatorfield egg-fed treatment. These digestive proteins came from parabasalians, a group of protists known to form symbiotic relationships with hosts that enhance digestion. Genes that code for these digestive proteins are not present in theR. imitatorgenome, and phylogenetic analyses indicate that these mRNA sequences are from parabasalians. Bar-coding analyses of the tadpole microbiomes further confirmed this discovery. Our findings indicate the presence of parabasalian symbiotes in the intestines of theR. imitatortadpoles, that may aid the tadpoles in protein/lipid digestion in the context of an egg diet. This may have enabled the exploitation of a key ecological niche, allowingR. imitatorto expand into an area with ecologically similar species (e.g.,R. variabilisandR. summersi). In turn, this may have enabled a Müllerian mimetic radiation, one of only a few examples of this phenomenon in vertebrates. 
    more » « less
  3. null (Ed.)
    Müllerian mimicry strongly exemplifies the power of natural selection. However, the exact measure of such adaptive phenotypic convergence and the possible causes of its imperfection often remain unidentified. Here, we first quantify wing colour pattern differences in the forewing region of 14 co-mimetic colour pattern morphs of the butterfly species Heliconius erato and Heliconius melpomene and measure the extent to which mimicking colour pattern morphs are not perfectly identical. Next, using gene-editing CRISPR/Cas9 KO experiments of the gene WntA , which has been mapped to colour pattern diversity in these butterflies, we explore the exact areas of the wings in which WntA affects colour pattern formation differently in H. erato and H. melpomene. We find that, while the relative size of the forewing pattern is generally nearly identical between co-mimics, the CRISPR/Cas9 KO results highlight divergent boundaries in the wing that prevent the co-mimics from achieving perfect mimicry. We suggest that this mismatch may be explained by divergence in the gene regulatory network that defines wing colour patterning in both species, thus constraining morphological evolution even between closely related species. 
    more » « less
  4. Background: Color and pattern phenotypes have clear implications for survival and reproduction in many species. However, the mechanisms that produce this coloration are still poorly characterized, especially at the genomic level. Here we have taken a transcriptomics-based approach to elucidate the underlying genetic mechanisms affecting color and pattern in a highly polytypic poison frog. We sequenced RNA from the skin from four different color morphs during the final stage of metamorphosis and assembled a de novo transcriptome. We then investigated differential gene expression, with an emphasis on examining candidate color genes from other taxa. Results: Overall, we found differential expression of a suite of genes that control melanogenesis, melanocyte differentiation, and melanocyte proliferation (e.g., tyrp1, lef1, leo1, and mitf) as well as several differentially expressed genes involved in purine synthesis and iridophore development (e.g., arfgap1, arfgap2, airc, and gart). Conclusions: Our results provide evidence that several gene networks known to affect color and pattern in vertebrates play a role in color and pattern variation in this species of poison frog. 
    more » « less
  5. Abstract Bumble bees (Bombus) exhibit exceptional diversity in setal body color patterns, largely as a result of convergence onto multiple Mullerian mimicry patterns globally. When multiple species cross the same sets of mimicry complexes, they can acquire the same color polymorphisms, providing replicates of phenotypic evolution. This study examines the genetic basis of parallel color pattern acquisition in three bumble bee taxon pairs in western North America that shift between orange-red and black mid-abdominal segmental coloration in Rocky Mountain and Pacific Coastal mimicry regions: polymorphic Bombus vancouverensis and B. melanopygus, and sister species B. huntii and B. vosnesenskii. Initial gene targets are identified using a genome-wide association study, while cross-developmental transcriptomics reveals genetic pathways leading to final pigmentation genes. The data show all three lineages independently target the regulatory region of a segmental-fate determining Hox gene, Abdominal B (Abd-B), for this color transition. For B. vancouverensis and B. melanopygus, this involves different deletions in the same location, and all mimicry pairs differentially express Abd-B and ncRNAs in this locus. Transcriptomics reveals a shared core gene network across species, where Abd-B interacts with nubbin and pigment enzyme ebony to decrease black melanin production in favor of paler, redder morphs. Expression of multiple genes in the melanin biosynthesis pathway is modified to promote this phenotype, with differing roles by taxon. Replicated morphologies unveil key genes and a Hox gene hotspot, while enabling evolutionary tracking of genetic changes to phenotypic changes and informing how gene regulatory networks evolve. 
    more » « less