Abstract The nonnormality of temperature probability distributions and the physics that drive it are important due to their relationships to the frequency of extreme warm and cold events. Here we use a conditional mean framework to explore how horizontal temperature advection and other physical processes work together to control the shape of daily temperature distributions during 1979–2019 in the ERA5 dataset for both JJA and DJF. We demonstrate that the temperature distribution in the middle and high latitudes can largely be linearly explained by the conditional mean horizontal temperature advection with the simple treatment of other processes as a Newtonian relaxation with a spatially variant relaxation time scale and equilibrium temperature. We analyze the role of different transient and stationary components of the horizontal temperature advection in affecting the shape of temperature distributions. The anomalous advection of the stationary temperature gradient has a dominant effect in influencing temperature variance, while both that term and the covariance between anomalous wind and anomalous temperature have significant effects on temperature skewness. While this simple method works well over most of the ocean, the advection–temperature relationship is more complicated over land. We classify land regions with different advection–temperature relationships under our framework, and find that for both seasons the aforementioned linear relationship can explain ∼30% of land area, and can explain either the lower or the upper half of temperature distributions in an additional ∼30% of land area. Identifying the regions where temperature advection explains shapes of temperature distributions well will help us gain more confidence in understanding the future change of temperature distributions and extreme events.
more »
« less
Constant volume combustion chamber (CVCC) investigations of aerospace F-24 and Jet-A in low-temperature heat release and negative temperature coefficient regions
- Award ID(s):
- 1950207
- PAR ID:
- 10326051
- Date Published:
- Journal Name:
- Energy Conversion and Management
- Volume:
- 263
- Issue:
- C
- ISSN:
- 0196-8904
- Page Range / eLocation ID:
- 115687
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The surrounding thermal environment is highly important for the survival and fitness of animals, and as a result most exhibit behavioral and neural responses to temperature changes. We study signals generated by thermosensory neurons inDrosophilalarvae and also the physical and sensory effects of temperature variation on locomotion and navigation. In particular we characterize how sensory neuronal and behavioral responses to temperature variation both change across the development of the larva. Looking at a wide range of non-nociceptive isotropic thermal environments, we characterize the dependence of speed, turning rate, and other behavioral components on temperature, distinguishing the physical effects of temperature from behavior changes based on sensory processing. We also characterize the strategies larvae use to modulate individual behavioral components to produce directed navigation along thermal gradients, and how these strategies change during physical development. Simulations based on modified random walks show where thermotaxis in each developmental stage fits into the larger context of possible navigation strategies. We also investigate cool sensing neurons in the larva's dorsal organ ganglion, characterizing neural response to sine-wave modulation of temperature while performing single-cell-resolution 3D imaging. We determine the sensitivity of these neurons, which produce signals in response to extremely small temperature changes. Combining thermotaxis results with neurophysiology data, we observe, across development, sensitivity to temperature change as low as a few thousandths of a °C per second, or a few hundredths of a °C in absolute temperature change.more » « less
-
Abstract. When quantifying temperature changes induced by deforestation (e.g., cooling in high latitudes, warming in low latitudes), satellite data, in situ observations, and climate models differ concerning the height at which the temperature is typically measured/simulated. In this study the effects of deforestation on surface temperature, near-surface air temperature, and lower atmospheric temperature are compared by analyzing the biogeophysical temperature effects of large-scale deforestation in the Max Planck Institute Earth System Model (MPI-ESM) separately for local effects (which are only apparent at the location of deforestation) and nonlocal effects (which are also apparent elsewhere). While the nonlocal effects (cooling in most regions) influence the temperature of the surface and lowest atmospheric layer equally, the local effects (warming in the tropics but a cooling in the higher latitudes) mainly affect the temperature of the surface.In agreement with observation-based studies, the local effects on surface and near-surface air temperature respond differently in the MPI-ESM, both concerning the magnitude of local temperature changes and the latitude at which the local deforestation effects turn from a cooling to a warming (at 45–55∘ N for surface temperature and around 35∘ N for near-surface air temperature). Subsequently, our single-model results are compared to model data from multiple climate models from the Climate Model Intercomparison Project (CMIP5). This inter-model comparison shows that in the northern midlatitudes, both concerning the summer warming and winter cooling, near-surface air temperature is affected by the local effects only about half as strongly as surface temperature. This study shows that the choice of temperature variable has a considerable effect on the observed and simulated temperature change. Studies about the biogeophysical effects of deforestation must carefully choose which temperature to consider.more » « less
An official website of the United States government

