skip to main content


Title: Ancestral Black Holes of Binary Merger GW190521
Abstract

GW190521 was the most massive black hole merger discovered by LIGO/Virgo so far, with masses in tension with stellar evolution models. A possible explanation of such heavy black holes is that they themselves are the remnants of previous mergers of lighter black holes. Here we estimate the masses of the ancestral black holes of GW190521, assuming it is the end product of previous mergers. We find that the heaviest parental black holes has a mass of5618+20M(90% credible level). We find 70% probability that it is in the 50M–120Mmass gap, indicating that it may also be the end product of a previous merger. We therefore also compute the expected mass distributions of the “grandparent” black holes of GW190521, assuming they existed. Ancestral black hole masses could represent an additional puzzle piece in identifying the origin of LIGO/Virgo/KAGRA’s heaviest black holes.

 
more » « less
Award ID(s):
1911796
NSF-PAR ID:
10364738
Author(s) / Creator(s):
;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal Letters
Volume:
929
Issue:
1
ISSN:
2041-8205
Format(s):
Medium: X Size: Article No. L1
Size(s):
["Article No. L1"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The existence of black holes (BHs) with masses in the range between stellar remnants and supermassive BHs has only recently become unambiguously established. GW190521, a gravitational wave signal detected by the LIGO/Virgo Collaboration, provides the first direct evidence for the existence of such intermediate-mass BHs (IMBHs). This event sparked and continues to fuel discussion on the possible formation channels for such massive BHs. As the detection revealed, IMBHs can form via binary mergers of BHs in the “upper mass gap” (≈40–120M). Alternatively, IMBHs may form via the collapse of a very massive star formed through stellar collisions and mergers in dense star clusters. In this study, we explore the formation of IMBHs with masses between 120 and 500Min young, massive star clusters using state-of-the-art Cluster Monte Carlo models. We examine the evolution of IMBHs throughout their dynamical lifetimes, ending with their ejection from the parent cluster due to gravitational radiation recoil from BH mergers, or dynamical recoil kicks from few-body scattering encounters. We find thatallof the IMBHs in our models are ejected from the host cluster within the first ∼500 Myr, indicating a low retention probability of IMBHs in this mass range for globular clusters today. We estimate the peak IMBH merger rate to be2Gpc3yr1at redshiftz≈ 2.

     
    more » « less
  2. Abstract

    Gravitational-wave (GW) detections of merging neutron star–black hole (NSBH) systems probe astrophysical neutron star (NS) and black hole (BH) mass distributions, especially at the transition between NS and BH masses. Of particular interest are the maximum NS mass, minimum BH mass, and potential mass gap between them. While previous GW population analyses assumed all NSs obey the same maximum mass, if rapidly spinning NSs exist, they can extend to larger maximum masses than nonspinning NSs. In fact, several authors have proposed that the ∼2.6Mobject in the event GW190814—either the most massive NS or least massive BH observed to date—is a rapidly spinning NS. We therefore infer the NSBH mass distribution jointly with the NS spin distribution, modeling the NS maximum mass as a function of spin. Using four LIGO–Virgo NSBH events including GW190814, if we assume that the NS spin distribution is uniformly distributed up to the maximum (breakup) spin, we infer the maximum nonspinning NS mass is2.70.4+0.5M(90% credibility), while assuming only nonspinning NSs, the NS maximum mass must be >2.53M(90% credibility). The data support the mass gap’s existence, with a minimum BH mass at5.41.0+0.7M. With future observations, under simplified assumptions, 150 NSBH events may constrain the maximum nonspinning NS mass to ±0.02M, and we may even measure the relation between the NS spin and maximum mass entirely from GW data. If rapidly rotating NSs exist, their spins and masses must be modeled simultaneously to avoid biasing the NS maximum mass.

     
    more » « less
  3. Abstract

    When modeling the population of merging binary black holes, analyses have generally focused on characterizing the distribution of primary (i.e., more massive) black holes in the binary, while using simplistic prescriptions for the distribution of secondary masses. However, the secondary mass distribution and its relationship to the primary mass distribution provide a fundamental observational constraint on the formation history of coalescing binary black holes. If both black holes experience similar stellar evolutionary processes prior to collapse, as might be expected in dynamical formation channels, the primary and secondary mass distributions would show similar features. If they follow distinct evolutionary pathways (for example, due to binary interactions that break symmetry between the initially more massive and less massive stars), their mass distributions may differ. We present the first analysis of the binary black hole population that explicitly fits for the secondary mass distribution. We find that the data is consistent with a ∼30Mpeak existing only in the distribution of secondary rather than primary masses. This would have major implications for our understanding of the formation of these binaries. Alternatively, the data is consistent with the peak existing in both component mass distributions, a possibility not included in most previous studies. In either case, the peak is observed at31.42.6+2.3M, which is shifted lower than the value obtained in previous analyses of the marginal primary mass distribution, placing this feature in further tension with expectations from a pulsational pair-instability supernova pileup.

     
    more » « less
  4. Abstract

    We present a measurement of the Hubble ConstantH0using the gravitational wave event GW190412, an asymmetric binary black hole merger detected by LIGO/Virgo, as a dark standard siren. This event does not have an electromagnetic counterpart, so we use the statistical standard siren method and marginalize over potential host galaxies from the Dark Energy Spectroscopic Instrument (DESI) survey. GW190412 is well-localized to 12 deg2(90% credible interval), so it is promising for a dark siren analysis. The dark siren value forH0=85.433.9+29.1km s−1 Mpc−1, with a posterior shape that is consistent with redshift overdensities. When combined with the bright standard siren measurement from GW170817 we recoverH0=77.965.03+23.0km s−1 Mpc−1, consistent with both early and late-time Universe measurements ofH0. This work represents the first standard siren analysis performed with DESI data, and includes the most complete spectroscopic sample used in a dark siren analysis to date.

     
    more » « less
  5. Abstract

    We search for features in the mass distribution of detected compact binary coalescences which signify the transition between neutron stars (NSs) and black holes (BHs). We analyze all gravitational-wave (GW) detections by the LIGO Scientific Collaboration, the Virgo Collaboration, and the KAGRA Collaboration (LVK) made through the end of the first half of the third observing run, and find clear evidence for two different populations of compact objects based solely on GW data. We confidently (99.3%) find a steepening relative to a single power law describing NSs and low-mass BHs below2.40.5+0.5M, which is consistent with many predictions for the maximum NS mass. We find suggestions of the purported lower mass gap between the most massive NSs and the least massive BHs, but are unable to conclusively resolve it with current data. If it exists, we find the lower mass gap’s edges to lie at2.20.5+0.7Mand6.01.4+2.4M. We reexamine events that have been deemed “exceptional” by the LVK collaborations in the context of these features. We analyze GW190814 self-consistently in the context of the full population of compact binaries, finding support for its secondary to be either a NS or a lower mass gap object, consistent with previous claims. Our models are the first to accommodate this event, which is an outlier with respect to the binary BH population. We find that GW200105 and GW200115 probe the edges of, and may have components within, the lower mass gap. As future data improve global population models, the classification of these events will also improve.

     
    more » « less