skip to main content

This content will become publicly available on February 1, 2023

Title: Exploring the relation between turbulent velocity and density fluctuations in the stratified intracluster medium
Context. The dynamics of the intracluster medium (ICM) is affected by turbulence driven by several processes, such as mergers, accretion and feedback from active galactic nuclei. Aims. X-ray surface brightness fluctuations have been used to constrain turbulence in galaxy clusters. Here, we use simulations to further investigate the relation between gas density and turbulent velocity fluctuations, with a focus on the effect of the stratification of the ICM. Methods. In this work, we studied the turbulence driven by hierarchical accretion by analysing a sample of galaxy clusters simulated with the cosmological code ENZO. We used a fixed scale filtering approach to disentangle laminar from turbulent flows. Results. In dynamically perturbed galaxy clusters, we found a relation between the root mean square of density and velocity fluctuations, albeit with a different slope than previously reported. The Richardson number is a parameter that represents the ratio between turbulence and buoyancy, and we found that this variable has a strong dependence on the filtering scale. However, we could not detect any strong relation between the Richardson number and the logarithmic density fluctuations, in contrast to results by recent and more idealised simulations. In particular, we find a strong effect from radial accretion, which more » appears to be the main driver for the gas fluctuations. The ubiquitous radial bias in the dynamics of the ICM suggests that homogeneity and isotropy are not always valid assumptions, even if the turbulent spectra follow Kolmogorov’s scaling. Finally, we find that the slope of the velocity and density spectra are independent of cluster-centric radii. « less
Authors:
; ; ; ; ;
Award ID(s):
1714205
Publication Date:
NSF-PAR ID:
10326091
Journal Name:
Astronomy & Astrophysics
Volume:
658
Page Range or eLocation-ID:
A149
ISSN:
0004-6361
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Active galactic nuclei (AGNs) feedback is responsible for maintaining plasma in global thermal balance in extended haloes of elliptical galaxies and galaxy clusters. Local thermal instability in the hot gas leads to the formation of precipitating cold gas clouds that feed the central supermassive black holes, thus heating the hot gas and maintaining global thermal equilibrium. We perform 3D magnetohydrodynamical (MHD) simulations of self-regulated AGNs feedback in a Perseus-like galaxy cluster with the aim of understanding the impact of the feedback physics on the turbulence properties of the hot and cold phases of the intracluster medium (ICM). We findmore »that, in general, the cold phase velocity structure function (VSF) is steeper than the prediction from Kolmogorov’s theory. We attribute the physical origin of the steeper slope of the cold phase VSF to the driving of turbulent motions primarily by the gravitational acceleration acting on the ballistic clouds. We demonstrate that, in the pure hydrodynamical case, the precipitating cold filaments may be the dominant agent driving turbulence in the hot ICM. The arguments in favour of this hypothesis are that: (i) the cold phase mass dominates over hot gas mass in the inner cool core; (ii) hot and cold gas velocities are spatially correlated; (iii) both the cold and hot phase velocity distributions are radially biased. We show that, in the MHD case, the turbulence in the ambient hot medium (excluding the jet cone regions) can also be driven by the AGN jets. The driving is then facilitated by enhanced coupling due to magnetic fields of the ambient gas and the AGN jets. In the MHD case, turbulence may thus be driven by a combination of AGN jet stirring and filament motions. We conclude that future observations, including those from high spatial and spectral resolution X-ray missions, may help to constrain self-regulated AGN feedback by quantifying the multitemperature VSF in the ICM.« less
  2. ABSTRACT

    We use a statistical sample of galaxy clusters from a large cosmological N-body + hydrodynamics simulation to examine the relation between morphology, or shape, of the X-ray emitting intracluster medium (ICM) and the mass accretion history of the galaxy clusters. We find that the mass accretion rate (MAR) of a cluster is correlated with the ellipticity of the ICM. The correlation is largely driven by material accreted in the last ∼4.5 Gyr, indicating a characteristic time-scale for relaxation of cluster gas. Furthermore, we find that the ellipticity of the outer regions (R ∼ R500c) of the ICM is correlated withmore »the overall MAR of clusters, while ellipticity of the inner regions (≲0.5 R500c) is sensitive to recent major mergers with mass ratios of ≥1:3. Finally, we examine the impact of variations in cluster mass accretion history on the X-ray observable–mass scaling relations. We show that there is a continuous anticorrelation between the residuals in the TX–M relation and cluster MARs, within which merging and relaxed clusters occupy extremes of the distribution rather than form two peaks in a bimodal distribution, as was often assumed previously. Our results indicate that the systematic uncertainties in the X-ray observable–mass relations can be mitigated by using the information encoded in the apparent ICM ellipticity.

    « less
  3. Abstract Accreting black holes can drive fast and energetic nuclear winds that may be an important feedback mechanism associated with active galactic nuclei (AGN). In this paper, we implement a scheme for capturing feedback from these fast nuclear winds and examine their impact in simulations of isolated disk galaxies. Stellar feedback is modeled using the FIRE physics and produces a realistic multiphase interstellar medium (ISM). We find that AGN winds drive the formation of a low-density, high-temperature central gas cavity that is broadly consistent with analytic model expectations. The effects of AGN feedback on the host galaxy are a strongmore »function of the wind kinetic power and momentum. Low and moderate luminosity AGN do not have a significant effect on their host galaxy: the AGN winds inefficiently couple to the ambient ISM and instead a significant fraction of their energy vents in the polar direction. For such massive black holes, accretion near the Eddington limit can have a dramatic impact on the host galaxy ISM: if AGN wind feedback acts for ≳ 20 − 30 Myr, the inner ∼1 − 10 kpc of the ISM is disrupted and the global galaxy star formation rate is significantly reduced. We quantify the properties of the resulting galaxy-scale outflows and find that the radial momentum in the outflow is boosted by a factor ∼2 − 3 relative to that initially supplied in the AGN wind for strong feedback scenarios, decreasing below unity for less energetic winds. In contrast to observations, however, the outflows are primarily hot, with very little atomic or molecular gas. We conjecture that merging galaxies and high-redshift galaxies, which have more turbulent and thicker disks and very different nuclear gas geometries, may be even more disrupted by AGN winds than found in our simulations.« less
  4. High Reynolds number wall-bounded turbulent flows subject to buoyancy forces are fraught with complex dynamics originating from the interplay between shear generation of turbulence ( $S$ ) and its production or destruction by density gradients ( $B$ ). For horizontal walls, $S$ augments the energy budget of the streamwise fluctuations, while $B$ influences the energy contained in the vertical fluctuations. Yet, return to isotropy remains a tendency of such flows where pressure–strain interaction redistributes turbulent energy among all three velocity components and thus limits, but cannot fully eliminate, the anisotropy of the velocity fluctuations. A reduced model of this energymore »redistribution in the inertial (logarithmic) sublayer, with no tuneable constants, is introduced and tested against large eddy and direct numerical simulations under both stable ( $B<0$ ) and unstable ( $B>0$ ) conditions. The model links key transitions in turbulence statistics with flux Richardson number (at $Ri_{f}=-B/S\approx$ $-2$ , $-1$ and $-0.5$ ) to shifts in the direction of energy redistribution. Furthermore, when coupled to a linear Rotta-type closure, an extended version of the model can predict individual variance components, as well as the degree of turbulence anisotropy. The extended model indicates a regime transition under stable conditions when $Ri_{f}$ approaches $Ri_{f,max}\approx +0.21$ . Buoyant destruction $B$ increases with increasing stabilizing density gradients when $Ri_{f}« less
  5. We investigate the validity of Taylor’s hypothesis (TH) in the analysis of velocity and magnetic field fluctuations in Alfvénic solar wind streams measured by Parker Solar Probe (PSP) during the first four encounters. The analysis is based on a recent model of the spacetime correlation of magnetohydrodynamic (MHD) turbulence, which has been validated in high-resolution numerical simulations of strong reduced MHD turbulence. We use PSP velocity and magnetic field measurements from 24 h intervals selected from each of the first four encounters. The applicability of TH is investigated by measuring the parameter ϵ  =  δu 0 /√2 V ⊥ ,more »which quantifies the ratio between the typical speed of large-scale fluctuations, δu 0 , and the local perpendicular PSP speed in the solar wind frame, V ⊥ . TH is expected to be applicable for ϵ ≲ 0.5 when PSP is moving nearly perpendicular to the local magnetic field in the plasma frame, irrespective of the Alfvén Mach number M A = V SW ∕ V A , where V SW and V A are the local solar wind and Alfvén speed, respectively. For the four selected solar wind intervals, we find that between 10 and 60% of the time, the parameter ϵ is below 0.2 and the sampling angle (between the spacecraft velocity in the plasma frame and the local magnetic field) is greater than 30°. For angles above 30°, the sampling direction is sufficiently oblique to allow one to reconstruct the reduced energy spectrum E ( k ⊥ ) of magnetic fluctuations from its measured frequency spectra. The spectral indices determined from power-law fits of the measured frequency spectrum accurately represent the spectral indices associated with the underlying spatial spectrum of turbulent fluctuations in the plasma frame. Aside from a frequency broadening due to large-scale sweeping that requires careful consideration, the spatial spectrum can be recovered to obtain the distribution of fluctuation’s energy across scales in the plasma frame.« less