skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 29 until 11:59 PM ET on Saturday, September 30 due to maintenance. We apologize for the inconvenience.


Title: Exploring the relation between turbulent velocity and density fluctuations in the stratified intracluster medium
Context. The dynamics of the intracluster medium (ICM) is affected by turbulence driven by several processes, such as mergers, accretion and feedback from active galactic nuclei. Aims. X-ray surface brightness fluctuations have been used to constrain turbulence in galaxy clusters. Here, we use simulations to further investigate the relation between gas density and turbulent velocity fluctuations, with a focus on the effect of the stratification of the ICM. Methods. In this work, we studied the turbulence driven by hierarchical accretion by analysing a sample of galaxy clusters simulated with the cosmological code ENZO. We used a fixed scale filtering approach to disentangle laminar from turbulent flows. Results. In dynamically perturbed galaxy clusters, we found a relation between the root mean square of density and velocity fluctuations, albeit with a different slope than previously reported. The Richardson number is a parameter that represents the ratio between turbulence and buoyancy, and we found that this variable has a strong dependence on the filtering scale. However, we could not detect any strong relation between the Richardson number and the logarithmic density fluctuations, in contrast to results by recent and more idealised simulations. In particular, we find a strong effect from radial accretion, which appears to be the main driver for the gas fluctuations. The ubiquitous radial bias in the dynamics of the ICM suggests that homogeneity and isotropy are not always valid assumptions, even if the turbulent spectra follow Kolmogorov’s scaling. Finally, we find that the slope of the velocity and density spectra are independent of cluster-centric radii.  more » « less
Award ID(s):
1714205
NSF-PAR ID:
10326091
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Astronomy & Astrophysics
Volume:
658
ISSN:
0004-6361
Page Range / eLocation ID:
A149
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    ABSTRACT Active galactic nuclei (AGNs) feedback is responsible for maintaining plasma in global thermal balance in extended haloes of elliptical galaxies and galaxy clusters. Local thermal instability in the hot gas leads to the formation of precipitating cold gas clouds that feed the central supermassive black holes, thus heating the hot gas and maintaining global thermal equilibrium. We perform 3D magnetohydrodynamical (MHD) simulations of self-regulated AGNs feedback in a Perseus-like galaxy cluster with the aim of understanding the impact of the feedback physics on the turbulence properties of the hot and cold phases of the intracluster medium (ICM). We find that, in general, the cold phase velocity structure function (VSF) is steeper than the prediction from Kolmogorov’s theory. We attribute the physical origin of the steeper slope of the cold phase VSF to the driving of turbulent motions primarily by the gravitational acceleration acting on the ballistic clouds. We demonstrate that, in the pure hydrodynamical case, the precipitating cold filaments may be the dominant agent driving turbulence in the hot ICM. The arguments in favour of this hypothesis are that: (i) the cold phase mass dominates over hot gas mass in the inner cool core; (ii) hot and cold gas velocities are spatially correlated; (iii) both the cold and hot phase velocity distributions are radially biased. We show that, in the MHD case, the turbulence in the ambient hot medium (excluding the jet cone regions) can also be driven by the AGN jets. The driving is then facilitated by enhanced coupling due to magnetic fields of the ambient gas and the AGN jets. In the MHD case, turbulence may thus be driven by a combination of AGN jet stirring and filament motions. We conclude that future observations, including those from high spatial and spectral resolution X-ray missions, may help to constrain self-regulated AGN feedback by quantifying the multitemperature VSF in the ICM. 
    more » « less
  2. High Reynolds number wall-bounded turbulent flows subject to buoyancy forces are fraught with complex dynamics originating from the interplay between shear generation of turbulence ( $S$ ) and its production or destruction by density gradients ( $B$ ). For horizontal walls, $S$ augments the energy budget of the streamwise fluctuations, while $B$ influences the energy contained in the vertical fluctuations. Yet, return to isotropy remains a tendency of such flows where pressure–strain interaction redistributes turbulent energy among all three velocity components and thus limits, but cannot fully eliminate, the anisotropy of the velocity fluctuations. A reduced model of this energy redistribution in the inertial (logarithmic) sublayer, with no tuneable constants, is introduced and tested against large eddy and direct numerical simulations under both stable ( $B<0$ ) and unstable ( $B>0$ ) conditions. The model links key transitions in turbulence statistics with flux Richardson number (at $Ri_{f}=-B/S\approx$ $-2$ , $-1$ and $-0.5$ ) to shifts in the direction of energy redistribution. Furthermore, when coupled to a linear Rotta-type closure, an extended version of the model can predict individual variance components, as well as the degree of turbulence anisotropy. The extended model indicates a regime transition under stable conditions when $Ri_{f}$ approaches $Ri_{f,max}\approx +0.21$ . Buoyant destruction $B$ increases with increasing stabilizing density gradients when $Ri_{f} more » « less
  3. ABSTRACT Long-term observations have shown that black hole X-ray binaries exhibit strong, aperiodic variability on time-scales of a few milliseconds to seconds. The observed light curves display various characteristic features like a lognormal distribution of flux and a linear rms–flux relation, which indicate that the underlying variability process is stochastic in nature. It is also thought to be intrinsic to accretion. This variability has been modelled as inward propagating fluctuations of mass accretion rate, although the physical process driving the fluctuations remains puzzling. In this work, we analyse five exceptionally long-duration general relativistic magnetohydrodynamic (GRMHD) simulations of optically thin, geometrically thick, black hole accretion flows to look for hints of propagating fluctuations in the simulation data. We find that the accretion profiles from these simulations do show evidence for inward propagating fluctuations below the viscous frequency by featuring strong radial coherence and positive time lags when comparing smaller to larger radii, although these time lags are generally shorter than the viscous time-scale and are frequency-independent. Our simulations also support the notion that the fluctuations in $\dot{M}$ build up in a multiplicative manner, as the simulations exhibit linear rms–mass flux relations, as well as lognormal distributions of their mass fluxes. When combining the mass fluxes from the simulations with an assumed emissivity profile, we additionally find broad agreement with observed power spectra and time lags, including a recovery of the frequency dependency of the time lags. 
    more » « less
  4. Giant number fluctuations are often considered as a hallmark of the emergent nonequilibrium dynamics of active fluids. However, these anomalous density fluctuations have only been reported experimentally in two-dimensional dry active systems heretofore. Here, we investigate density fluctuations of bulk Escherichia coli suspensions, a paradigm of three-dimensional (3D) wet active fluids. Our experiments demonstrate the existence and quantify the scaling relation of giant number fluctuations in 3D bacterial suspensions. Surprisingly, the anomalous scaling persists at small scales in low-concentration suspensions well before the transition to active turbulence, reflecting the long-range nature of hydrodynamic interactions of 3D wet active fluids. To illustrate the origin of the density fluctuations, we measure the energy spectra of suspension flows and explore the density–energy coupling in both the steady and transient states of active turbulence. A scale-invariant density-independent correlation between density fluctuations and energy spectra is uncovered across a wide range of length scales. In addition, our experiments show that the energy spectra of bacterial turbulence exhibit the scaling of 3D active nematic fluids, challenging the common view of dense bacterial suspensions as active polar fluids. 
    more » « less
  5. ABSTRACT We study the spatially resolved (sub-kpc) gas velocity dispersion (σ)–star formation rate (SFR) relation in the FIRE-2 (Feedback in Realistic Environments) cosmological simulations. We specifically focus on Milky Way-mass disc galaxies at late times (z ≈ 0). In agreement with observations, we find a relatively flat relationship, with σ ≈ 15–30 km s−1 in neutral gas across 3 dex in SFRs. We show that higher dense gas fractions (ratios of dense gas to neutral gas) and SFRs are correlated at constant σ. Similarly, lower gas fractions (ratios of gas to stellar mass) are correlated with higher σ at constant SFR. The limits of the σ–ΣSFR relation correspond to the onset of strong outflows. We see evidence of ‘on-off’ cycles of star formation in the simulations, corresponding to feedback injection time-scales of 10–100 Myr, where SFRs oscillate about equilibrium SFR predictions. Finally, SFRs and velocity dispersions in the simulations agree well with feedback-regulated and marginally stable gas disc (Toomre’s Q = 1) model predictions, and the simulation data effectively rule out models assuming that gas turns into stars at (low) constant efficiency (i.e. 1 per cent per free-fall time). And although the simulation data do not entirely exclude gas accretion/gravitationally powered turbulence as a driver of σ, it appears to be subdominant to stellar feedback in the simulated galaxy discs at z ≈ 0. 
    more » « less