skip to main content

Title: Comparison of Student Outcomes and Evaluations in Hybrid Versus Face-to-Face Anatomy and Physiology I Courses
In this study, two sections of undergraduate Introductory Anatomy and Physiology taught in the traditional face-to-face format (n = 58) was compared to two hybrid classes (n = 38) using the flipped-classroom model taught by the same instructor. Formative and summative examination scores were compared to determine the effect of the different learning methods. Our results revealed no significant difference between the mean scores of summative examinations and between the traditional and hybrid classes (p > 0.05). Of five quizzes administered, students taught in the traditional format scored significantly higher in only one of five quizzes. In addition, comparison of in-class laboratory examination scores showed no difference (P > 0.05) in three out of four. However, student evaluations of the hybrid classes were more positive as determined by end-of-course evaluations (4.54 versus 2.9 on a 1–5 Likert scale). This is the first study that compares a hybrid versus a traditional science course at a historically black college or university. We conclude that comparison of student outcomes in traditional versus hybrid Anatomy and Physiology I classes were similar. At a time when all institutions of higher learning have adopted online learning and distance learning due to the COVID-19 pandemic, this is a timely comparison
Authors:
Editors:
Dr David Wojnowski
Award ID(s):
1900966
Publication Date:
NSF-PAR ID:
10326212
Journal Name:
Journal of college science teaching
Volume:
Vol. 51
Issue:
1
Page Range or eLocation-ID:
58-66
ISSN:
0047-231X
Sponsoring Org:
National Science Foundation
More Like this
  1. There has been growing evidence that flipped teaching (FT) can increase student engagement. Traditional lecture-based teaching (TT) method was compared with FT and FT combined with retrieval practice (FTR) in a 400-level Exercise Physiology course over eight semesters. In the FT format, lecture content was assigned for students to prepare before class along with an online quiz. During class, the assigned content and quiz questions were reviewed, and a team-based learning (TBL) activity was conducted. Students found FT implementation three times a week (FT3) to be overwhelming, which led to reconfiguration of the FT design to minimize the quiz and TBL sessions to one per week. Subsequently, FT was combined with retrieval exercises (FTR), which involved recalling information, thus promoting retention. The students in the FTR format were given weekly quizzes in class, where no notes were allowed, which affected their quiz grade negatively compared with FT ( P < 0.0001). Again, no resources were permitted during FTR’s TBL sessions. When exam scores were compared with TT, student performance was significantly greater ( P < 0.001) with the FT and FTR methods, suggesting these methods are superior to TT. While both male and female students benefited from FT and FTRmore »methods compared with TT ( P = 0.0008), male students benefited the most (( P = 0.0001). Similarly, when the exam scores were organized into upper and lower halves, both groups benefited from FT and FTR ( P < 0.0001) approaches. In conclusion, both FT and FTR methods benefit students more compared with TT, and male students are impacted the most.« less
  2. Community colleges provide an important pathway for many prospective engineering graduates, especially those from traditionally underrepresented groups. However, due to a lack of facilities, resources, student demand and/or local faculty expertise, the breadth and frequency of engineering course offerings is severely restricted at many community colleges. This in turn presents challenges for students trying to maximize their transfer eligibility and preparedness. Through a grant from the National Science Foundation Improving Undergraduate STEM Education program (NSF IUSE), three community colleges from Northern California collaborated to increase the availability and accessibility of a comprehensive lower-division engineering curriculum, even at small-to-medium sized community colleges. This was accomplished by developing resources and teaching strategies that could be employed in a variety of delivery formats (e.g., fully online, online/hybrid, flipped face-to-face, etc.), providing flexibility for local community colleges to leverage according to their individual needs. This paper focuses on the iterative development, testing, and refining of the resources for an introductory Materials Science course with 3-unit lecture and 1-unit laboratory components. This course is required as part of recently adopted statewide model associate degree curricula for transfer into Civil, Mechanical, Aerospace, and Manufacturing engineering bachelor’s degree programs at California State Universities. However, offering such amore »course is particularly challenging for many community colleges, because of a lack of adequate expertise and/or laboratory facilities and equipment. Consequently, course resources were developed to help mitigate these challenges by streamlining preparation for instructors new to teaching the course, as well as minimizing the face-to-face use of traditional materials testing equipment in the laboratory portion of the course. These same resources can be used to support online hybrid and other alternative (e.g., emporium) delivery approaches. After initial pilot implementation of the course during the Spring 2015 semester by the curriculum designer in a flipped student-centered format, these same resources were then implemented by an instructor who had never previously taught the course, at a different community college that did not have its own materials laboratory facilities. A single site visit was arranged with a nearby community college to afford students an opportunity to complete certain lab activities using traditional materials testing equipment. Lessons learned during this attempt were used to inform curriculum revisions, which were evaluated in a repeat offering the following year. In all implementations of the course, student surveys and interviews were used to determine students’ perceptions of the effectiveness of the course resources, student use of these resources, and overall satisfaction with the course. Additionally, student performance on objective assessments was compared with that of traditional lecture delivery of the course by the curriculum designer in prior years. During initial implementations of the course, results from these surveys and assessments revealed low levels of student satisfaction with certain aspects of the flipped approach and course resources, as well as reduced learning among students at the alternate institution. Subsequent modifications to the curriculum and delivery approach were successful in addressing most of these deficiencies.« less
  3. Introduction: Inquiry-based learning is vital to the engineering design process, and most crucially in the laboratory and hands-on settings. Through the model of inquiry-based design, student teams are able to formulate critical inputs to the design process and develop a stronger and more relevant understanding of theoretical principles and their applications. In the junior-level Biotransport laboratory course at Purdue University’s Weldon School of BME, the curriculum utilizes the engineering design process to guide students through three (3) different modules covering different Biotransport phenomena (diffusivity, mass transport, and heat transfer). Students are required to research, conceptualize, and generate hypotheses around a module prompt. Students design, execute, and analyze their own experimental setups to test the hypotheses within an autodidactic peer-learning structure. Methods: A multi-year study was completed spanning from 2014 to 2016, assessing students’ end of course evaluations. With an integration of the flipped lecture into the lab being first implemented in 2015 (prior to 2015, the flipped lecture was a stand-alone course offered outside of the lab sections), the data presented here offers a comparison of student evaluations between these two course structures. Per the student response rates, the sample size for each year was: n=81 (2016); n=60 (2015); n=48more »(2014). The surveys were anonymous and a host of questions related to overall course satisfaction, structure, and content were posed. Results: Analysis of the data showed a consistent increase in overall student satisfaction with the course following the implementation of the new structure. The percent of students giving a satisfactory rating or higher for the 2014, 2015 and 2016 course offerings was 79%, 89%, 92%, respectively. This shows a significant difference between 2014 and 2016. Conclusion: The integration of a flipped lecture into the lab successfully improved student satisfaction and self-perceived understanding of course material. This format also improved the delivery of content to students as assessed by maintaining pertinence to the lab topics and clear understanding of learning concepts.« less
  4. A substantial percentage of engineering graduates, especially those from traditionally underrepresented groups, complete their lower-division education at a community college before transferring to a university to earn their degree. However, engineering programs at many community colleges, because of their relatively small scale with often only one permanent faculty member, struggle to offer lower-division engineering courses with the breadth and frequency needed by students for effective and efficient transfer preparation. As a result, engineering education becomes impractical and at times inaccessible for many community college students. Through a grant from the National Science Foundation Improving Undergraduate STEM Education program (NSF IUSE), three community colleges from Northern California collaborated to increase the availability and accessibility of the engineering curriculum by developing resources and teaching strategies to enable small-to-medium sized community college engineering programs to support a comprehensive set of lower-division engineering courses. These resources were developed for use in a variety of delivery formats (e.g., fully online, online/hybrid, flipped face-to-face, etc.), providing flexibility for local community colleges to leverage according to their individual needs. This paper focuses on the development and testing of the resources for an introductory Materials Science course with 3-unit lecture and 1-unit laboratory components. Although most of themore »course resources were developed to allow online delivery if desired, the laboratory curriculum was designed to require some limited face-to-face interaction with traditional materials testing equipment. In addition to the resources themselves, the paper presents the results of the pilot implementation of the course during the Spring 2015 semester, taught using a flipped delivery format consisting of asynchronous remote viewing of lecture videos and face-to-face student-centered problem-solving and lab exercises. These same resources were then implemented in a flipped format by an instructor who had never previously taught the course, at a community college that did not have its own materials laboratory facilities. Site visits were arranged with a nearby community college to afford students an opportunity to complete certain lab activities using traditional materials testing equipment. In both implementations of the course, student surveys and interviews were used to determine students’ perceptions of the effectiveness of the course resources, student use of these resources, and overall satisfaction with the course. Additionally, student performance on assessments was compared with that of traditional lecture delivery of the courses in prior years.« less
  5. The Introduction to engineering (EGGN-100) is a project-based course offered every fall semester to first-year students with undecided engineering majors at California State University, Fullerton (CSUF). The primary objective of this course is to provide project-based learning (PBL) and introduce these students to major projects in Civil, Mechanical, Electrical, and Computer Engineering projects so that they can make an informed decision about their major. The PBL is an active learning method that aims to engage students in acquiring knowledge and skills through real-world experiences and well-planned project activities in engineering disciplines. The course comprises four team-based unique projects related to Civil, Mechanical, Electrical, and Computer Engineering. The project involves using a variety of engineering tools like AutoCAD, Multisim, and Arduino platforms. For the first time, due to the COVID-19 pandemic, the hands-on project-based EGGN-100 course was offered virtually. In this research, we document the learning experiences of students who attended EGGN-100 in a traditional face-to-face mode of instruction and students who participated in the same course in a virtual instruction mode. Surveys conducted during seemingly different modes of instruction show varying levels of satisfaction among students. Of the students who attended the course in traditional and instructional instruction mode, 69%more »and 90% responded that discipline-specific projects enabled them to make an informed decision, and PBL helped them choose their preferred major. Even the percentage of students who believed the PBL helped them make an informed decision about their major, they like to do more hands-on projects and prefer to attend the classes on campus. Students rated higher satisfaction in virtual instructional mode primarily due to the availability of video lectures, self-paced learning, and readily accessible project simulations. Learning by doing would have bought out the challenges and minor nuances of designing and executing an engineering project. Learning by watching is surficial and not necessarily exposes students to minor details that are critical. As such, the significance of this study is that maybe, after all, not all courses can be taught in a virtual environment, and some courses may be strictly taught in a traditional, hands-on instruction mode. We also study the socio-psychological impact of traditional and virtual learning experiences and report the remedies to cope with stress and loneliness in the online learning environment.« less