skip to main content

This content will become publicly available on April 6, 2023

Title: Fundamentals and exploration of aggregation-induced emission molecules for amyloid protein aggregation
The past decade has witnessed the growing interest and advances in aggregation-induced emission (AIE) molecules as driven by their unique fluorescence/optical properties in particular sensing applications including biomolecule sensing/detection, environmental/health monitoring, cell imaging/tracking, and disease analysis/diagnosis. In sharp contrast to conventional aggregation-caused quenching (ACQ) fluorophores, AIE molecules possess intrinsic advantages for the study of disease-related protein aggregates, but such studies are still at an infant stage with much less scientific exploration. This outlook mainly aims to provide the first systematic summary of AIE-based molecules for amyloid protein aggregates associated with neurodegenerative diseases. Despite a limited number of studies on AIE–amyloid systems, we will survey recent and important developments of AIE molecules for different amyloid protein aggregates of Aβ (associated with Alzheimer's disease), insulin (associated with type 2 diabetes), (α-syn, associated with Parkinson's disease), and HEWL (associated with familial lysozyme systemic amyloidosis) with a particular focus on the working principle and structural design of four types of AIE-based molecules. Finally, we will provide our views on current challenges and future directions in this emerging area. Our goal is to inspire more researchers and investment in this emerging but less explored subject, so as to advance our fundamental understanding and practical design/usages more » of AIE molecules for disease-related protein aggregates. « less
Authors:
; ; ; ; ; ;
Award ID(s):
2107619
Publication Date:
NSF-PAR ID:
10326266
Journal Name:
Journal of Materials Chemistry B
Volume:
10
Issue:
14
Page Range or eLocation-ID:
2280 to 2295
ISSN:
2050-750X
Sponsoring Org:
National Science Foundation
More Like this
  1. Amyloids are fibrous cross-β protein aggregates that are capable of proliferation via nucleated polymerization. Amyloid conformation likely represents an ancient protein fold and is linked to various biological or pathological manifestations. Self-perpetuating amyloid-based protein conformers provide a molecular basis for transmissible (infectious or heritable) protein isoforms, termed prions. Amyloids and prions, as well as other types of misfolded aggregated proteins are associated with a variety of devastating mammalian and human diseases, such as Alzheimer's, Parkinson's and Huntington's diseases, transmissible spongiform encephalopathies (TSEs), amyotrophic lateral sclerosis (ALS) and transthyretinopathies. In yeast and fungi, amyloid-based prions control phenotypically detectable heritable traits. Simplicity of cultivation requirements and availability of powerful genetic approaches makes yeast Saccharomyces cerevisiae an excellent model system for studying molecular and cellular mechanisms governing amyloid formation and propagation. Genetic techniques allowing for the expression of mammalian or human amyloidogenic and prionogenic proteins in yeast enable researchers to capitalize on yeast advantages for characterization of the properties of disease-related proteins. Chimeric constructs employing mammalian and human aggregation-prone proteins or domains, fused to fluorophores or to endogenous yeast proteins allow for cytological or phenotypic detection of disease-related protein aggregation in yeast cells. Yeast systems are amenable to high-throughput screening for antagonists ofmore »amyloid formation, propagation and/or toxicity. This review summarizes up to date achievements of yeast assays in application to studying mammalian and human disease-related aggregating proteins, and discusses both limitations and further perspectives of yeast-based strategies.« less
  2. Amyloids are self-perpetuating protein aggregates causing neurodegenerative diseases in mammals. Prions are transmissible protein isoforms (usually of amyloid nature). Prion features were recently reported for various proteins involved in amyloid and neural inclusion disorders. Heritable yeast prions share molecular properties (and in the case of polyglutamines, amino acid composition) with human disease-related amyloids. Fundamental protein quality control pathways, including chaperones, the ubiquitin proteasome system and autophagy are highly conserved between yeast and human cells. Crucial cellular proteins and conditions influencing amyloids and prions were uncovered in the yeast model. The treatments available for neurodegenerative amyloid-associated diseases are few and their efficiency is limited. Yeast models of amyloid-related neurodegenerative diseases have become powerful tools for high-throughput screening for chemical compounds and FDA-approved drugs that reduce aggregation and toxicity of amyloids. Although some environmental agents have been linked to certain amyloid diseases, the molecular basis of their action remains unclear. Environmental stresses trigger amyloid formation and loss, acting either via influencing intracellular concentrations of the amyloidogenic proteins or via heterologous inducers of prions. Studies of environmental and physiological regulation of yeast prions open new possibilities for pharmacological intervention and/or prophylactic procedures aiming on common cellular systems rather than the properties of specificmore »amyloids.« less
  3. Alzheimer's disease (AD) has been consistently related to the formation of senile amyloid plaques mainly composed of amyloid β (Aβ) peptides. The toxicity of Aβ aggregates has been indicated to be responsible for AD pathology. One scenario to decrease Aβ toxicity is the development of effective inhibitors against Aβ amyloid formation. In this study, we investigate the effect of gallium nitride nanoparticles (GaN NPs) as inhibitors of Aβ40 amyloid formation using a combination of biophysical approaches. Our results show that the lag phase of Aβ40 aggregation kinetics is significantly retarded by GaN NPs in a concentration dependent manner, implying the activity of GaN NPs in interfering with the formation of the crucial nucleus during Aβ aggregation. Our results also show that GaN NPs can reduce the amyloid fibril elongation rate in the course of the aggregation kinetics. It is speculated that the high polarization characteristics of GaN NPs may provoke a strong interaction between the particles and Aβ40 peptide and in this way decrease self-association of the peptide monomers to form amyloids.
  4. Accumulation of protein-based (Aβ) aggregates on cellular membranes with varying structural properties is commonly recognized as the key step in Alzheimer's pathogenesis. But experimental and computational challenges have made this biophysical characterization difficult. In particular, studies connecting biological membrane organization and Aβ aggregation are limited. While experiments have suggested that an increased membrane curvature results in faster Aβ peptide aggregation in the context of Alzheimer's disease, a mechanistic explanation for this relation is missing. In this work, we are leveraging molecular simulations with a physics-based coarse grained model to address and understand the relationships between curved cellular membranes and aggregation of a model template peptide Aβ 16–22. In agreement with experimental results, our simulations also suggest a positive correlation between increased peptide aggregation and membrane curvature. More curved membranes have higher lipid packing defects that engage peptide hydrophobic groups and promote faster diffusion leading to peptide fibrillar structures. In addition, we curated the effects of peptide aggregation on the membrane's structure and organization. Interfacial peptide aggregation results in heterogeneous headgroup–peptide interactions and an induced crowding effect at the lipid headgroup region, leading to a more ordered headgroup region and disordered lipid-tails at the membrane core. This work presents a mechanisticmore »and morphological overview of the relationships between the biomembrane local structure and organization, and Aβ peptide aggregation.« less
  5. Prevention and detection of misfolded amyloid proteins and their β-structure-rich aggregates are the two promising but different (pre)clinical strategies to treat and diagnose neurodegenerative diseases including Alzheimer's diseases (AD) and type II diabetes (T2D). Conventional strategies prevent the design of new pharmaceutical molecules with both amyloid inhibition and detection functions. Here, we propose a “like-interacts-like” design principle to de novo design a series of new self-assembling peptides (SAPs), enabling them to specifically and strongly interact with conformationally similar β-sheet motifs of Aβ (association with AD) and hIAPP (association with T2D). Collective in vitro experimental data from thioflavin (ThT), atomic force microscopy (AFM), circular dichroism (CD), and cell assay demonstrate that SAPs possess two integrated functions of (i) amyloid inhibition for preventing both Aβ and hIAPP aggregation by 34–61% and reducing their induced cytotoxicity by 7.6–35.4% and (ii) amyloid sensing for early detection of toxic Aβ and hIAPP aggregates using in-house SAP-based paper sensors and SPR sensors. The presence of both amyloid inhibition and detection in SAPs stems from strong molecular interactions between amyloid aggregates and SAPs, thus providing a new multi-target model for expanding the new therapeutic potentials of SAPs and other designs with built-in amyloid inhibition and detection functions.