skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.


Title: Fundamentals and exploration of aggregation-induced emission molecules for amyloid protein aggregation
The past decade has witnessed the growing interest and advances in aggregation-induced emission (AIE) molecules as driven by their unique fluorescence/optical properties in particular sensing applications including biomolecule sensing/detection, environmental/health monitoring, cell imaging/tracking, and disease analysis/diagnosis. In sharp contrast to conventional aggregation-caused quenching (ACQ) fluorophores, AIE molecules possess intrinsic advantages for the study of disease-related protein aggregates, but such studies are still at an infant stage with much less scientific exploration. This outlook mainly aims to provide the first systematic summary of AIE-based molecules for amyloid protein aggregates associated with neurodegenerative diseases. Despite a limited number of studies on AIE–amyloid systems, we will survey recent and important developments of AIE molecules for different amyloid protein aggregates of Aβ (associated with Alzheimer's disease), insulin (associated with type 2 diabetes), (α-syn, associated with Parkinson's disease), and HEWL (associated with familial lysozyme systemic amyloidosis) with a particular focus on the working principle and structural design of four types of AIE-based molecules. Finally, we will provide our views on current challenges and future directions in this emerging area. Our goal is to inspire more researchers and investment in this emerging but less explored subject, so as to advance our fundamental understanding and practical design/usages of AIE molecules for disease-related protein aggregates.  more » « less
Award ID(s):
2107619
NSF-PAR ID:
10326266
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Materials Chemistry B
Volume:
10
Issue:
14
ISSN:
2050-750X
Page Range / eLocation ID:
2280 to 2295
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Amyloid protein aggregation is associated with many neurodegenerative diseases, including amyloid‐β (Aβ)in Alzheimer disease, human islet amyloid polypeptide (hIAPP) in type II diabetes, and human calcitonin (hCT) in medullary thyroid carcinoma. Significant efforts have been made to develop different diagnostic and prevention strategies for the early detection and intervention of these disease‐causative protein aggregates. However, conventional design wisdoms are mostly limited to the molecules with either single function (amyloid imaging or amyloid prevention) or single targeting protein (Aβ, hIAPP, or hCT). Here, a rational design strategy of an amyloid‐aggregation‐induced emission (AIE)‐active molecule is demonstrated by conjugating an amyloid fragment of GNNQQNY (G7) with an AIE fluorescent molecule of triphenylvinyl benzoic acid (namely, G7‐TBA), making G7‐TBA as multiple‐target, dual‐function, amyloid probes and amyloid modulators for detecting, monitoring, and altering amyloid aggregation of three different amyloid proteins (Aβ, hIAPP, and hCT). G7‐TBA probe shows conformationally specific binding affinities to amyloid aggregates, switching from an “off” state (low fluorescence) for amyloid monomers to an “on” state (high fluorescence) for β‐structure‐rich amyloid oligomers and fibrils in aqueous solution. Further surface immobilization of TBA probes on surface plasmon resonance surfaces allows to amplify detection sensitivity and binding affinity to amyloid aggregates formed at different aggregation stages. G7‐TBA as amyloid modulator enables acceleration of amyloid fibrillization and selectively protects cells from hIAPP‐induced toxicity. The distinct amyloid detection and modulation of G7‐TBA are essentially derived from the cross‐seeding between G7 and amyloid aggregation via β‐structure interaction, which by far exceed the binding affinity between commercial ThT and amyloid aggregates. Such design concepts of amyloid‐AIE conjugates can be further explored as multiple‐function and target probes and/or modulators for biomedical applications.

     
    more » « less
  2. Neurodegeneration related to Alzheimer's disease has long been linked to the accumulation of abnormal aggregates of amyloid-β (Aβ) peptides. Pre-fibrillar oligomeric intermediates of Aβ aggregation are considered the primary drivers of neurotoxicity, however, their targetting remains an unresolved challenge. In response, the effects of macromolecular components of the blood–brain barrier, artificial extracellular matrix mimics, and polymeric drug delivery particles, on the aggregation of Aβ peptides are gaining interest. Multiple experimental studies have demonstrated the potential of one such macromolecule, chitosan (CHT) – a polysaccharide with acid induced cationicity (p K a 6.5) – to inhibit the aggregation of Aβ, and reduce the associated neurotoxic effects. However, the mechanistic details of this inhibitory action, and the structural details of the emergent Aβ complexes are not understood. In this work, we probed how CHT modulated the aggregation of Aβ's central hydrophobic core fragment, K 16 LVFFAE 22 , using coarse-grained molecular dynamics simulations. CHT was found to bind and sequester Aβ peptides, thus limiting their ultimate aggregation numbers. The intensity of this inhibitory action was enhanced by CHT concentration, as well as CHT's pH-dependent degree of cationicity, corroborating experimental observations. Furthermore, CHT was found to reshape the conformational landscapes of Aβ peptides, enriching collapsed peptides at near-physiological conditions of pH 7.5, and extended peptides at slightly acidic conditions of pH 6.5, where the charge profile of K 16 LVFFAE 22 peptides remained unchanged. These conformational changes were limited to peptides in direct contact in CHT, thus emphasizing the influence of local environments on Aβ conformations. These findings add to basic knowledge of the aggregation behaviour of Aβ peptides, and could potentially guide the development of advanced CHT-based materials for the treatment of Alzheimer's disease. 
    more » « less
  3. Amyloids are fibrous cross-β protein aggregates that are capable of proliferation via nucleated polymerization. Amyloid conformation likely represents an ancient protein fold and is linked to various biological or pathological manifestations. Self-perpetuating amyloid-based protein conformers provide a molecular basis for transmissible (infectious or heritable) protein isoforms, termed prions. Amyloids and prions, as well as other types of misfolded aggregated proteins are associated with a variety of devastating mammalian and human diseases, such as Alzheimer's, Parkinson's and Huntington's diseases, transmissible spongiform encephalopathies (TSEs), amyotrophic lateral sclerosis (ALS) and transthyretinopathies. In yeast and fungi, amyloid-based prions control phenotypically detectable heritable traits. Simplicity of cultivation requirements and availability of powerful genetic approaches makes yeast Saccharomyces cerevisiae an excellent model system for studying molecular and cellular mechanisms governing amyloid formation and propagation. Genetic techniques allowing for the expression of mammalian or human amyloidogenic and prionogenic proteins in yeast enable researchers to capitalize on yeast advantages for characterization of the properties of disease-related proteins. Chimeric constructs employing mammalian and human aggregation-prone proteins or domains, fused to fluorophores or to endogenous yeast proteins allow for cytological or phenotypic detection of disease-related protein aggregation in yeast cells. Yeast systems are amenable to high-throughput screening for antagonists of amyloid formation, propagation and/or toxicity. This review summarizes up to date achievements of yeast assays in application to studying mammalian and human disease-related aggregating proteins, and discusses both limitations and further perspectives of yeast-based strategies. 
    more » « less
  4. Abstract

    Aggregates of misfolded proteins are associated with several devastating neurodegenerative diseases. These so‐called amyloids are therefore explored as biomarkers for the diagnosis of dementia and other disorders, as well as for monitoring disease progression and assessment of the efficacy of therapeutic interventions. Quantification and characterization of amyloids as biomarkers is particularly demanding because the same amyloid‐forming protein can exist in different states of assembly, ranging from nanometer‐sized monomers to micrometer‐long fibrils that interchange dynamically both in vivo and in samples from body fluids ex vivo. Soluble oligomeric amyloid aggregates, in particular, are associated with neurotoxic effects, and their molecular organization, size, and shape appear to determine their toxicity. This concept article proposes that the emerging field of nanopore‐based analytics on a single molecule and single aggregate level holds the potential to account for the heterogeneity of amyloid samples and to characterize these particles—rapidly, label‐free, and in aqueous solution—with regard to their size, shape, and abundance. The article describes the concept of nanopore‐based resistive pulse sensing, reviews previous work in amyloid analysis, and discusses limitations and challenges that will need to be overcome to realize the full potential of amyloid characterization on a single‐particle level.

     
    more » « less
  5. Amyloids are self-perpetuating protein aggregates causing neurodegenerative diseases in mammals. Prions are transmissible protein isoforms (usually of amyloid nature). Prion features were recently reported for various proteins involved in amyloid and neural inclusion disorders. Heritable yeast prions share molecular properties (and in the case of polyglutamines, amino acid composition) with human disease-related amyloids. Fundamental protein quality control pathways, including chaperones, the ubiquitin proteasome system and autophagy are highly conserved between yeast and human cells. Crucial cellular proteins and conditions influencing amyloids and prions were uncovered in the yeast model. The treatments available for neurodegenerative amyloid-associated diseases are few and their efficiency is limited. Yeast models of amyloid-related neurodegenerative diseases have become powerful tools for high-throughput screening for chemical compounds and FDA-approved drugs that reduce aggregation and toxicity of amyloids. Although some environmental agents have been linked to certain amyloid diseases, the molecular basis of their action remains unclear. Environmental stresses trigger amyloid formation and loss, acting either via influencing intracellular concentrations of the amyloidogenic proteins or via heterologous inducers of prions. Studies of environmental and physiological regulation of yeast prions open new possibilities for pharmacological intervention and/or prophylactic procedures aiming on common cellular systems rather than the properties of specific amyloids. 
    more » « less