skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A cascade of bHLH-regulated pathways programs maize anther development
Abstract The spatiotemporal development of somatic tissues of the anther lobe is necessary for successful fertile pollen production. This process is mediated by many transcription factors acting through complex, multi-layered networks. Here, our analysis of functional knockout mutants of interacting basic helix–loop–helix genes Ms23, Ms32, basic helix–loop–helix 122 (bHLH122), and bHLH51 in maize (Zea mays) established that male fertility requires all four genes, expressed sequentially in the tapetum (TP). Not only do they regulate each other, but also they encode proteins that form heterodimers that act collaboratively to guide many cellular processes at specific developmental stages. MS23 is confirmed to be the master factor, as the ms23 mutant showed the earliest developmental defect, cytologically visible in the TP, with the most drastic alterations in premeiotic gene expression observed in ms23 anthers. Notably, the male-sterile ms23, ms32, and bhlh122-1 mutants lack 24-nt phased secondary small interfering RNAs (phasiRNAs) and the precursor transcripts from the corresponding 24-PHAS loci, while the bhlh51-1 mutant has wild-type levels of both precursors and small RNA products. Multiple lines of evidence suggest that 24-nt phasiRNA biogenesis primarily occurs downstream of MS23 and MS32, both of which directly activate Dcl5 and are required for most 24-PHAS transcription, with bHLH122 playing a distinct role in 24-PHAS transcription.  more » « less
Award ID(s):
1754097
PAR ID:
10326285
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
The Plant Cell
Volume:
34
Issue:
4
ISSN:
1040-4651
Page Range / eLocation ID:
1207 to 1225
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. SUMMARY The anther‐enriched phased, small interfering RNAs (phasiRNAs) play vital roles in sustaining male fertility in grass species. Their long non‐coding precursors are synthesized by RNA polymerase II and are likely regulated by transcription factors (TFs). A few putative transcriptional regulators of the 21‐ or 24‐nucleotide phasiRNA loci (referred to as21‐or24‐PHASloci) have been identified in maize (Zea mays), but whether any of the individual TFs or TF combinations suffice to activate anyPHASlocus is unclear. Here, we identified the temporal gene coexpression networks (modules) associated with maize anther development, including two modules highly enriched for the21‐or24‐PHASloci. Comparisons of these coexpression modules and gene sets dysregulated in several reported male sterile TF mutants provided insights into TF timing with regard to phasiRNA biogenesis, including antagonistic roles for OUTER CELL LAYER4 and MALE STERILE23.Trans‐activation assays in maize protoplasts of individual TFs using bulk‐protoplast RNA‐sequencing showed that two of the TFs coexpressed with21‐PHASloci could activate several 21‐nucleotide phasiRNA pathway genes but not transcription of21‐PHASloci. Screens for combinatorial activities of these TFs and, separately, the recently reported putative transcriptional regulators of24‐PHASloci using single‐cell (protoplast) RNA‐sequencing, did not detect reproducible activation of either21‐PHASor24‐PHASloci. Collectively, our results suggest that the endogenous transcriptional machineries and/or chromatin states in the anthers are necessary to activate reproductivePHASloci. 
    more » « less
  2. Wigge, Philip Anthony (Ed.)
    Plant growth and development are acutely sensitive to high ambient temperature caused in part due to climate change. However, the mechanism of high ambient temperature signaling is not well defined. Here, we show that HECATEs (HEC1 and HEC2), two helix-loop-helix transcription factors, inhibit thermomorphogenesis. While the expression of HEC1 and HEC2 is increased and HEC2 protein is stabilized at high ambient temperature, hec1hec2 double mutant showed exaggerated thermomorphogenesis. Analyses of the four PHYTOCHROME INTERACTING FACTOR (PIF1, PIF3, PIF4 and PIF5) mutants and overexpression lines showed that they all contribute to promote thermomorphogenesis. Furthermore, genetic analysis showed that pifQ is epistatic to hec1hec2 . HECs and PIFs oppositely control the expression of many genes in response to high ambient temperature. PIFs activate the expression of HEC s in response to high ambient temperature. HEC2 in turn interacts with PIF4 both in yeast and in vivo . In the absence of HECs, PIF4 binding to its own promoter as well as the target gene promoters was enhanced, indicating that HECs control PIF4 activity via heterodimerization. Overall, these data suggest that PIF4-HEC forms an autoregulatory composite negative feedback loop that controls growth genes to modulate thermomorphogenesis. 
    more » « less
  3. Summary In maize, 24‐nt phased, secondary small interfering RNAs (phasiRNAs) are abundant in meiotic stage anthers, but their distribution and functions are not precisely known.Using laser capture microdissection, we analyzed tapetal cells, meiocytes and other somatic cells at several stages of anther development to establish the timing of 24‐PHASprecursor transcripts and the 24‐nt phasiRNA products.By integrating RNA and small RNA profiling plus single‐molecule and small RNA FISH (smFISH or sRNA‐FISH) spatial detection, we demonstrate that the tapetum is the primary site of 24‐PHASprecursor andDcl5transcripts and the resulting 24‐nt phasiRNAs. Interestingly, 24‐nt phasiRNAs accumulate in all cell types, with the highest levels in meiocytes, followed by tapetum.Our data support the conclusion that 24‐nt phasiRNAs are mobile from tapetum to meiocytes and to other somatic cells. We discuss possible roles for 24‐nt phasiRNAs in anther cell types. 
    more » « less
  4. Reproductive phasiRNAs (phased, small interfering RNAs) are broadly present in angiosperms and play crucial roles in sustaining male fertility. While the premeiotic 21-nt (nucleotides) phasiRNAs and meiotic 24-nt phasiRNA pathways have been extensively studied in maize (Zea mays) and rice (Oryza sativa), a third putative category of reproductive phasiRNAs–named premeiotic 24-nt phasiRNAs–have recently been reported in barley (Hordeum vulgare) and wheat (Triticum aestivum). To determine whether premeiotic 24-nt phasiRNAs are also present in maize and related species and begin to characterize their biogenesis and function, we performed a comparative transcriptome and degradome analysis of premeiotic and meiotic anthers from five maize inbred lines and three teosinte species/subspecies. Our data indicate that a substantial subset of the 24-nt phasiRNA loci in maize and teosinte are already highly expressed at the premeiotic phase. The premeiotic 24-nt phasiRNAs are similar to meiotic 24-nt phasiRNAs in genomic origin and dependence on DCL5 (Dicer-like 5) for biogenesis, however, premeiotic 24-nt phasiRNAs are unique in that they are likely i) not triggered by microRNAs, ii) not loaded by AGO18 proteins, and iii) not capable of mediatingPHASprecursor cleavage. In addition, we also observed a group of premeiotic 24-nt phasiRNAs in rice using previously published data. Together, our results indicate that the premeiotic 24-nt phasiRNAs constitute a unique class of reproductive phasiRNAs and are present more broadly in the grass family (Poaceae) than previously known. 
    more » « less
  5. Abstract Small RNAs play important roles during plant development by regulating transcript levels of target mRNAs, maintaining genome integrity, and reinforcing DNA methylation.Dicer-like 5(Dcl5) is proposed to be responsible for precise slicing in many monocots to generate diverse 24-nt phased, secondary small interfering RNAs (phasiRNAs), which are exceptionally abundant in meiotic anthers of diverse flowering plants. The importance and functions of these phasiRNAs remain unclear. Here, we characterized several mutants ofdcl5, including alleles generated by the clustered regularly interspaced short palindromic repeats (CRISPR)–Cas9system and a transposon-disrupted allele. We report thatdcl5mutants have few or no 24-nt phasiRNAs, develop short anthers with defective tapetal cells, and exhibit temperature-sensitive male fertility. We propose that DCL5 and 24-nt phasiRNAs are critical for fertility under growth regimes for optimal yield. 
    more » « less