Agrobacterium transfers T-DNA to plants where it may integrate into the genome. Non-homologous end-joining (NHEJ) has been invoked as the mechanism of T-DNA integration, but the role of various NHEJ proteins remains controversial. Genetic evidence for the role of NHEJ in T-DNA integration has yielded conflicting results. We propose to investigate the formation of T-circles as a proxy for understanding T-DNA integration. T-circles are circular double-strand T-DNA molecules, joined at their left (LB) and right (RB) border regions, formed in plants. We characterized LB-RB junction regions from hundreds of T-circles formed in Nicotiana benthamiana or Arabidopsis thaliana . These junctions resembled T-DNA/plant DNA junctions found in integrated T-DNA: Among complex T-circles composed of multiple T-DNA molecules, RB-RB/LB-LB junctions predominated over RB-LB junctions; deletions at the LB were more frequent and extensive than those at the RB; microhomology was frequently used at junction sites; and filler DNA, from the plant genome or various Agrobacterium replicons, was often present between the borders. Ku80 was not required for efficient T-circle formation, and a VirD2 ω mutation affected T-circle formation and T-DNA integration similarly. We suggest that investigating the formation of T-circles may serve as a surrogate for understanding T-DNA integration.
more »
« less
Plant DNA repair and Agrobacterium T-DNA integration.
Agrobacterium species transfer DNA (T-DNA) to plant cells where it may integrate into plant chromosomes. The process of integration is thought to involve invasion and ligation of T-DNA, or its copying, into nicks or breaks in the host genome. Integrated T-DNA often contains, at its junctions with plant DNA, deletions of T-DNA or plant DNA, filler DNA, and/or microhomology between T-DNA and plant DNA pre-integration sites. T-DNA integration is also often associated with major plant genome rearrangements, including inversions and translocations. These characteristics are similar to those often found after repair of DNA breaks, and thus DNA repair mechanisms have frequently been invoked to explain the mechanism of T-DNA integration. However, the involvement of specific plant DNA repair proteins and Agrobacterium proteins in integration remains controversial, with numerous contradictory results reported in the literature. In this review I discuss this literature and comment on many of these studies. I conclude that either multiple known DNA repair pathways can be used for integration, or that some yet unknown pathway must exist to facilitate T-DNA integration into the plant genome.
more »
« less
- Award ID(s):
- 1848434
- PAR ID:
- 10326425
- Date Published:
- Journal Name:
- International journal of molecular sciences
- Volume:
- 2:8458
- ISSN:
- 1661-6596
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Several species of the Agrobacterium genus represent unique bacterial pathogens able to genetically transform plants, by transferring and integrating a segment of their own DNA (T-DNA, transferred DNA) in their host genome. Whereas in nature this process results in uncontrolled growth of the infected plant cells (“tumors”), this capability of Agrobacterium has been widely used as a crucial tool to generate transgenic plants, for research and biotechnology. The virulence of Agrobacterium relies on a series of virulence genes, mostly encoded on a large plasmid (Ti-plasmid, tumor inducing plasmid), involved in the different steps of the DNA transfer to the host cell genome: activation of bacterial virulence, synthesis and export of the T-DNA and its associated proteins, intracellular trafficking of the T-DNA and effector proteins in the host cell, and integration of the T-DNA in the host genomic DNA. Multiple interactions between these bacterial encoded proteins and host factors occur during the infection process, which determine the outcome of the infection. Here, we review our current knowledge of the mechanisms by which bacterial and plant factors control Agrobacterium virulence and host plant susceptibility.more » « less
-
Abstract AgrobacteriumT‐DNA integration into the plant genome is essential for the process of transgenesis and is widely used for genome engineering. The importance of the non‐homologous end‐joining (NHEJ) protein DNA polymerase Θ, encoded by thePolQgene, for T‐DNA integration is controversial, with some groups claiming it is essential whereas others claim T‐DNA integration inArabidopsisand ricepolQmutant plant tissue. Because of pleiotropic effects of PolQ loss on plant development, scientists have previously had difficulty regenerating transgenicpolQmutant plants. We describe a protocol for regenerating transgenicpolQmutant rice plants using a sequential transformation method. This protocol may be applicable to other plant species.more » « less
-
Summary Integration ofAgrobacterium tumefacienstransferred DNA (T‐DNA) into the plant genome is the last step required for stable plant genetic transformation. The mechanism of T‐DNA integration remains controversial, although scientists have proposed the participation of various nonhomologous end‐joining (NHEJ) pathways. Recent evidence suggests that inArabidopsis, DNA polymerase θ (PolQ) may be a crucial enzyme involved in T‐DNA integration.We conducted quantitative transformation assays of wild‐type andpolQmutantArabidopsisand rice, analyzed T‐DNA/plant DNA junction sequences, and (forArabidopsis) measured the amount of integrated T‐DNA in mutant and wild‐type tissue.Unexpectedly, we were able to generate stable transformants of all tested lines, although the transformation frequency ofpolQmutants was c.20% that of wild‐type plants. T‐DNA/plant DNA junctions from these transformed rice andArabidopsis polQmutants closely resembled those from wild‐type plants, indicating that loss of PolQ activity does not alter the characteristics of T‐DNA integration events.polQmutant plants show growth and developmental defects, perhaps explaining previous unsuccessful attempts at their stable transformation.We suggest that either multiple redundant pathways function in T‐DNA integration, and/or that integration requires some yet unknown pathway.more » « less
-
Genetic transformation of host plants by Agrobacterium tumefaciens and related species represents a unique model for natural horizontal gene transfer. Almost five decades of studying the molecular interactions between Agrobacterium and its host cells have yielded countless fundamental insights into bacterial and plant biology, even though several steps of the DNA transfer process remain poorly understood. Agrobacterium spp. may utilizs different pathways for transfer of its DNA, which likely reflects the very wide host range of Agrobacterium. Moreover, closely related bacterial species, such as rhizobia, become able transfer DNA to host plant cells when they are provided with Agrobacterium DNA transfer machinery and T-DNA. Homologs of Agrobacterium virulence genes are found in many bacterial genomes, but only one non-Agrobacterium bacterial strain, Rhizobium etli CFN42, harbors a complete set of virulence genes and can mediate plant genetic transformation when carrying a T-DNA-containing plasmid.more » « less