skip to main content


Title: Effect of ionization waves on dust chain formation in a DC discharge
An interesting aspect of complex plasma is its ability to self-organize into a variety of structural configurations and undergo transitions between these states. A striking phenomenon is the isotropic-to-string transition observed in electrorheological complex plasma under the influence of a symmetric ion wake field. Such transitions have been investigated using the Plasma Kristall-4 (PK-4) microgravity laboratory on the International Space Station. Recent experiments and numerical simulations have shown that, under PK-4-relevant discharge conditions, the seemingly homogeneous direct current discharge column is highly inhomogeneous, with large axial electric field oscillations associated with ionization waves occurring on microsecond time scales. A multi-scale numerical model of the dust–plasma interactions is employed to investigate the role of the electric field in the charge of individual dust grains, the ion wake field and the order of string-like structures. Results are compared with those for dust strings formed in similar conditions in the PK-4 experiment.  more » « less
Award ID(s):
1740203
NSF-PAR ID:
10326429
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Plasma Physics
Volume:
87
Issue:
6
ISSN:
0022-3778
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This study examines the structure and stability of filamentary dusty plasmas using data from the Plasmakristall-4 (PK-4) facility on board the International Space Station. Under the action of a polarity-switched DC electric field, the dust particles in the PK-4 discharge have been found to organize into field-aligned extended filaments, which has been compared to the filamentary state in electrorheological (ER) fluids. Here we discuss how, in addition to an ER-type structural transition, the PK-4 dusty plasmas exhibit structural states reminiscent of those observed in liquid crystals (LCs) with rod-shaped molecules. We find that dust particles within the filaments are strongly coupled in a crystalline-like structure, while the coupling of particles across filaments is liquid-like. In addition to a common orientation along a director axis (nematic behavior), the dust filaments also appear to align in large-scale nested structures, or shells (smectic behavior). Finally, these filaments are found to further arrange in hexagonal patterns within the plane orthogonal to the director axis, suggesting the possibility for smectic-B and smectic-C structural states. As the observed ER and LC features of the filamentary dusty plasma states are sensitive to variations in the PK-4 discharge conditions, we argue that these dusty plasmas can provide a controlled analogous system for the study of fundamental phenomena in soft matter, such as the origins of pattern formation and universality of phase transitions. 
    more » « less
  2. Self-organization of dust grains into stable filamentary dust structures (or “chains”) largely depends on dynamic interactions between individual charged dust grains and complex electric potential arising from the distribution of charges within a local plasma environment. Recent studies have shown that the positive column of the gas discharge plasma in the Plasmakristall-4 (PK-4) experiment at the International Space Station supports the presence of fast-moving ionization waves, which lead to variations of plasma parameters by up to an order of magnitude from the average background values. The highly variable environment resulting from ionization waves may have interesting implications for the dynamics and self-organization of dust particles, particularly concerning the formation and stability of dust chains. Here, we investigate the electric potential surrounding dust chains in the PK-4 experiment by employing a molecular dynamics model of the dust and ions with boundary conditions supplied by a particle-in-cell with Monte Carlo collision simulation of the ionization waves. The model is used to examine the effects of the plasma conditions within different regions of the ionization wave and compare the resulting dust structure to that obtained by employing the time-averaged plasma conditions. The comparison between simulated dust chains and experimental data from the PK-4 experiment shows that the time-averaged plasma conditions do not accurately reproduce observed results for dust behavior, indicating that more careful treatment of plasma conditions in the presence of ionization waves is required. It is further shown that commonly used analytic forms of the electric potential do not accurately describe the electric potential near charged dust grains under these plasma conditions.

     
    more » « less
  3. null (Ed.)
    The PK-4 system is a micro-gravity dusty plasma experiment currently in operation on-board the International Space Station. The experiment utilizes a long DC discharge in neon or argon gases. We apply our 2D particle-in-cell with Monte Carlo collisions discharge simulation to compute local plasma parameters that serve as input data for future dust dynamics models. The simulation includes electrons, Ne+ ions, and Nem metastable atoms in neon gas and their collisions at solid surfaces including secondary electron emission and glass wall charging. On the time scale of the on-board optical imaging, the positive column appears stable and homogeneous. On the other hand, our simulations show that on microsecond time scales the positive column is highly inhomogeneous: ionization waves with phase velocities in the range between 500 m s−1 and 1200 m s−1 dominate the structure. In these waves, the electric field and charged particle densities can reach amplitudes up to 10 times of their average value. Our experiments on ground-based PK-4 replica systems fully support the numerical findings. In the experiment, the direction of the DC current can be alternated, which has been found to favor dust particle chain formation. We discuss possible mechanisms for how the highly oscillatory plasma environment contributes to the dust particle chain formation. 
    more » « less
  4. null (Ed.)
    The excitation of low frequency dust acoustic (or dust density) waves in a dusty plasma can be driven by the flow of ions relative to dust. We consider the nonlinear development of the ion–dust streaming instability in a highly collisional plasma, where the ion and dust collision frequencies are a significant fraction of their corresponding plasma frequencies. This collisional parameter regime may be relevant to dusty plasma experiments under microgravity or ground-based conditions with high gas pressure. One-dimensional particle-in-cell simulations are presented, which take into account collisions of ions and dust with neutrals, and a background electric field that drives the ion flow. Ion flow speeds of the order of a few times thermal are considered. Waveforms of the dust density are found to have broad troughs and sharp crests in the nonlinear phase. The results are compared with the nonlinear development of the ion–dust streaming instability in a plasma with low collisionality. 
    more » « less
  5. Abstract Non-equilibrium plasmas derive their low temperature reactivity from producing and driving energetic electrons and active species under large electric fields. Therefore, the impact of reactants on the plasma properties including electron number density, electric field, and electron temperature is critical for applications such as plasma methane (CH 4 ) reforming. Due to experimental complexity, electron properties and the electric field are rarely measured together in the same discharge. In this work, we combine time-resolved Thomson scattering and electric field induced second harmonic generation to probe electron temperature, electron density, and electric field strength in a 60 Torr CH 4 /Ar nanosecond-pulsed dielectric barrier discharge while varying the CH 4 mole fraction from 0% to 8%. These measurements are compared to a 1D numerical model to benchmark its predictions and identify areas of uncertainty. Nonlinear coupling between CH 4 addition, electron temperature, electron density, and the electric field was directly observed. Contrary to previous measurements in He, the electron temperature increased with CH 4 mole fraction. This rise in electron temperature is identified as electron heating by residual electric fields that increased with larger CH 4 mole fraction. Moreover, the electron number density has been found to decrease rapidly with the increase of methane mole fraction. Comparison of these measurements with the model yielded better agreement at higher CH 4 mole fractions and with the usage of ab initio calculated Ar electron-impact cross-sections from the B-spline R-matrix database. Furthermore, the calculated plasma properties are shown to be sensitive to the residual surface charge implanted on the quartz dielectric surfaces. Without considering surface charge in the simulations, the calculated electric field profiles agreed well with the measurements, but the electron properties were underpredicted by more than a factor of three. Therefore, measurements of either the electric field or electron properties measurements alone are insufficient to fully validate modeling predictions. 
    more » « less