skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Adapt2Learn: A Toolkit for Configuring the Learning Algorithm for Adaptive Physical Tools for Motor-Skill Learning
A recent study on motor-skill training showed that adaptive training tools that use shape-change to adapt the training difficulty based on learners’ performance can lead to higher learning gains. However, to date, no support tools exist to help designers create adaptive learning tools. Our formative study shows that developing the adaptive learning algorithm poses a particular challenge. To address this, we built Adapt2Learn, a toolkit that auto-generates the learning algorithm for adaptive tools. Designers choose their tool’s sensors and actuators, Adapt2Learn then configures the learning algorithm and generates a microcontroller script that designers can deploy on the tool. Once uploaded, the script assesses the learner’s performance via the sensors, computes the training difficulty, and actuates the tool to adapt the difficulty. Adapt2Learn’s visualization tool then lets designers visualize their tool’s adaptation and evaluate the learning algorithm. To validate that Adapt2Learn can generate adaptation algorithms for different tools, we built several application examples that demonstrate successful deployment.  more » « less
Award ID(s):
1844406
PAR ID:
10326559
Author(s) / Creator(s):
Date Published:
Journal Name:
DIS '21: Designing Interactive Systems Conference 2021
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Adaptive tools that can change their shape to support users with motor tasks have been used in a variety of applications, such as to improve ergonomics and support muscle memory. In this paper, we investigate whether shape-adapting tools can also help in motor skill training. In contrast to static training tools that maintain task difficulty at a fixed level during training, shape-adapting tools can vary task difficulty and thus keep learners’ training at the optimal challenge point, where the task is neither too easy, nor too difficult. To investigate whether shape adaptation helps in motor skill training, we built a study prototype in the form of an adaptive basketball stand that works in three conditions: (1) static, (2) manually adaptive, and (3) auto-adaptive. For the auto-adaptive condition, the tool adapts to train learners at the optimal challenge point where the task is neither too easy nor too difficult. Results from our two user studies show that training in the auto-adaptive condition leads to statistically significant learning gains when compared to the static (F1, 11 = 1.856, p < 0.05) and manually adaptive conditions (F1, 11 = 2.386, p < 0.05). 
    more » « less
  2. Despite recent promising results on semi-supervised learning (SSL), data imbalance, particularly in the unlabeled dataset, could significantly impact the training performance of a SSL algorithm if there is a mismatch between the expected and actual class distributions. The efforts on how to construct a robust SSL framework that can effectively learn from datasets with unknown distributions remain limited. We first investigate the feasibility of adding weights to the consistency loss and then we verify the necessity of smoothed weighting schemes. Based on this study, we propose a self-adaptive algorithm, named Smoothed Adaptive Weighting (SAW). SAW is designed to enhance the robustness of SSL by estimating the learning difficulty of each class and synthesizing the weights in the consistency loss based on such estimation. We show that SAW can complement recent consistency-based SSL algorithms and improve their reliability on various datasets including three standard datasets and one gigapixel medical imaging application without making any assumptions about the distribution of the unlabeled set. 
    more » « less
  3. Lu, Xin; Wang, Wei; Wu, Dehao; Li, Xiaoxia (Ed.)
    In the rapidly evolving landscape of scientific semiconductor laboratories (commonly known as, cleanrooms), integrated with Internet of Things (IoT) technology and Cyber-Physical Systems (CPSs), several factors including operational changes, sensor aging, software updates and the introduction of new processes or equipment can lead to dynamic and non-stationary data distributions in evolving data streams. This phenomenon, known as concept drift, poses a substantial challenge for traditional data-driven digital twin static machine learning (ML) models for anomaly detection and classification. Subsequently, the drift in normal and anomalous data distributions over time causes the model performance to decay, resulting in high false alarm rates and missed anomalies. To address this issue, we present TWIN-ADAPT, a continuous learning model within a digital twin framework designed to dynamically update and optimize its anomaly classification algorithm in response to changing data conditions. This model is evaluated against state-of-the-art concept drift adaptation models and tested under simulated drift scenarios using diverse noise distributions to mimic real-world distribution shift in anomalies. TWIN-ADAPT is applied to three critical CPS datasets of Smart Manufacturing Labs (also known as “Cleanrooms”): Fumehood, Lithography Unit and Vacuum Pump. The evaluation results demonstrate that TWIN-ADAPT’s continual learning model for optimized and adaptive anomaly classification achieves a high accuracy and F1 score of 96.97% and 0.97, respectively, on the Fumehood CPS dataset, showing an average performance improvement of 0.57% over the offline model. For the Lithography and Vacuum Pump datasets, TWIN-ADAPT achieves an average accuracy of 69.26% and 71.92%, respectively, with performance improvements of 75.60% and 10.42% over the offline model. These significant improvements highlight the efficacy of TWIN-ADAPT’s adaptive capabilities. Additionally, TWIN-ADAPT shows a very competitive performance when compared with other benchmark drift adaptation algorithms. This performance demonstrates TWIN-ADAPT’s robustness across different modalities and datasets, confirming its suitability for any IoT-driven CPS framework managing diverse data distributions in real time streams. Its adaptability and effectiveness make it a versatile tool for dynamic industrial settings. 
    more » « less
  4. Computational modeling tools present unique opportunities and challenges for student learning. Each tool has a representational system that impacts the kinds of explorations students engage in. Inquiry aligned with a tool’s representational system can support more productive engagement toward target learning goals. However, little research has examined how teachers can make visible the ways students’ ideas about a phenomenon can be expressed and explored within a tool’s representational system. In this paper, we elaborate on the construct of ontological alignment—that is, identifying and leveraging points of resonance between students’ existing ideas and the representational system of a tool. Using interaction analysis, we identify alignment practices adopted by a science teacher and her students in a computational agent-based modeling unit. Specifically, we describe three practices: (1) Elevating student ideas relevant to the tool’s representational system; (2) Exploring and testing links between students’ conceptual and computational models; and (3) Drawing on evidence resonant with the tool’s representational system to differentiate between theories. Finally, we discuss the pedagogical value of ontological alignment as a way to leverage students’ ideas in alignment with a tool’s representational system and suggest the presented practices as exemplary ways to support students’ computational modeling for science learning. 
    more » « less
  5. This paper presents a learning-based methodology for developing an optimal lane-changing control policy for a Remote Controlled (RC) car using real-time sensor data. The RC car is equipped with sensors including GPS, IMU devices, and a camera integrated in an Nvidia Jetson AGX Xavier board. By a novel Adaptive Dynamic Programming (ADP) algorithm, our RC car is capable of learning the optimal lane-changing strategies based on the real-time processed measurement from the sensors. The experimental outcomes show that our learning-based control algorithm can be effectively implemented, adapt to parameter changes, and complete the lane changing tasks in a short learning time with satisfactory performance. 
    more » « less