skip to main content

This content will become publicly available on July 1, 2023

Title: A Neural Network Approach for High-Dimensional Optimal Control Applied to Multi-Agent Path Finding
We propose a neural network approach that yields approximate solutions for high-dimensional optimal control problems and demonstrate its effectiveness using examples from multi-agent path finding. Our approach yields controls in a feedback form, where the policy function is given by a neural network (NN). Specifically, we fuse the Hamilton-Jacobi-Bellman (HJB) and Pontryagin Maximum Principle (PMP) approaches by parameterizing the value function with an NN. Our approach enables us to obtain approximately optimal controls in real-time without having to solve an optimization problem. Once the policy function is trained, generating a control at a given space-time location takes milliseconds; in contrast, efficient nonlinear programming methods typically perform the same task in seconds. We train the NN offline using the objective function of the control problem and penalty terms that enforce the HJB equations. Therefore, our training algorithm does not involve data generated by another algorithm. By training on a distribution of initial states, we ensure the controls' optimality on a large portion of the state-space. Our grid-free approach scales efficiently to dimensions where grids become impractical or infeasible. We apply our approach to several multi-agent collision-avoidance problems in up to 150 dimensions. Furthermore, we empirically observe that the number of parameters more » in our approach scales linearly with the dimension of the control problem, thereby mitigating the curse of dimensionality. « less
Authors:
; ; ; ; ;
Award ID(s):
1751636
Publication Date:
NSF-PAR ID:
10326613
Journal Name:
IEEE transactions on control systems technology
ISSN:
1558-0865
Sponsoring Org:
National Science Foundation
More Like this
  1. We propose a neural network approach for solving high-dimensional optimal control problems. In particular, we focus on multi-agent control problems with obstacle and collision avoidance. These problems immediately become high-dimensional, even for moderate phase-space dimensions per agent. Our approach fuses the Pontryagin Maximum Principle and Hamilton-Jacobi-Bellman (HJB) approaches and parameterizes the value function with a neural network. Our approach yields controls in a feedback form for quick calculation and robustness to moderate disturbances to the system. We train our model using the objective function and optimality conditions of the control problem. Therefore, our training algorithm neither involves a data generationmore »phase nor solutions from another algorithm. Our model uses empirically effective HJB penalizers for efficient training. By training on a distribution of initial states, we ensure the controls' optimality is achieved on a large portion of the state-space. Our approach is grid-free and scales efficiently to dimensions where grids become impractical or infeasible. We demonstrate our approach's effectiveness on a 150-dimensional multi-agent problem with obstacles.« less
  2. We present a closed-loop multi-arm motion planner that is scalable and flexible with team size. Traditional multi-arm robotic systems have relied on centralized motion planners, whose run times often scale exponentially with team size, and thus, fail to handle dynamic environments with open-loop control. In this paper, we tackle this problem with multi-agent reinforcement learning, where a shared policy network is trained to control each individual robot arm to reach its target end-effector pose given observations of its workspace state and target end-effector pose. The policy is trained using Soft Actor-Critic with expert demonstrations from a sampling-based motion planning algorithmmore »(i.e., BiRRT). By leveraging classical planning algorithms, we can improve the learning efficiency of the reinforcement learning algorithm while retaining the fast inference time of neural networks. The resulting policy scales sub-linearly and can be deployed on multi-arm systems with variable team sizes. Thanks to the closed-loop and decentralized formulation, our approach generalizes to 5-10 multiarm systems and dynamic moving targets (>90% success rate for a 10-arm system), despite being trained on only 1-4 arm planning tasks with static targets.« less
  3. We develop a convex analytic framework for ReLU neural networks which elucidates the inner workings of hidden neurons and their function space characteristics. We show that neural networks with rectified linear units act as convex regularizers, where simple solutions are encouraged via extreme points of a certain convex set. For one dimensional regression and classification, as well as rank-one data matrices, we prove that finite two-layer ReLU networks with norm regularization yield linear spline interpolation. We characterize the classification decision regions in terms of a closed form kernel matrix and minimum L1 norm solutions. This is in contrast to Neuralmore »Tangent Kernel which is unable to explain neural network predictions with finitely many neurons. Our convex geometric description also provides intuitive explanations of hidden neurons as auto encoders. In higher dimensions, we show that the training problem for two-layer networks can be cast as a finite dimensional convex optimization problem with infinitely many constraints. We then provide a family of convex relaxations to approximate the solution, and a cutting-plane algorithm to improve the relaxations. We derive conditions for the exactness of the relaxations and provide simple closed form formulas for the optimal neural network weights in certain cases. We also establish a connection to ℓ0-ℓ1 equivalence for neural networks analogous to the minimal cardinality solutions in compressed sensing. Extensive experimental results show that the proposed approach yields interpretable and accurate models.« less
  4. We propose a novel family of connectionist models based on kernel machines and consider the problem of learning layer by layer a compositional hypothesis class (i.e., a feedforward, multilayer architecture) in a supervised setting. In terms of the models, we present a principled method to “kernelize” (partly or completely) any neural network (NN). With this method, we obtain a counterpart of any given NN that is powered by kernel machines instead of neurons. In terms of learning, when learning a feedforward deep architecture in a supervised setting, one needs to train all the components simultaneously using backpropagation (BP) since theremore »are no explicit targets for the hidden layers (Rumelhart, Hinton, & Williams, 1986). We consider without loss of generality the two-layer case and present a general framework that explicitly characterizes a target for the hidden layer that is optimal for minimizing the objective function of the network. This characterization then makes possible a purely greedy training scheme that learns one layer at a time, starting from the input layer. We provide instantiations of the abstract framework under certain architectures and objective functions. Based on these instantiations, we present a layer-wise training algorithm for an l-layer feedforward network for classification, where l≥2 can be arbitrary. This algorithm can be given an intuitive geometric interpretation that makes the learning dynamics transparent. Empirical results are provided to complement our theory. We show that the kernelized networks, trained layer-wise, compare favorably with classical kernel machines as well as other connectionist models trained by BP. We also visualize the inner workings of the greedy kernelized models to validate our claim on the transparency of the layer-wise algorithm.« less
  5. Contextual bandit is a classic multi-armed bandit setting, where side information (i.e., context) is available before arm selection. A standard assumption is that exact contexts are perfectly known prior to arm selection and only single feedback is returned. In this work, we focus on multi-feedback bandit learning with probabilistic contexts, where a bundle of contexts are revealed to the agent along with their corresponding probabilities at the beginning of each round. This models such scenarios as where contexts are drawn from the probability output of a neural network and the reward function is jointly determined by multiple feedback signals. Wemore »propose a kernelized learning algorithm based on upper confidence bound to choose the optimal arm in reproducing kernel Hilbert space for each context bundle. Moreover, we theoretically establish an upper bound on the cumulative regret with respect to an oracle that knows the optimal arm given probabilistic contexts, and show that the bound grows sublinearly with time. Our simula- tion on machine learning model recommendation further validates the sub-linearity of our cumulative regret and demonstrates that our algorithm outper- forms the approach that selects arms based on the most probable context.« less