Abstract Determining conditions for earthquake slip on faults is a key goal of fault mechanics highly relevant to seismic hazard. Previous studies have demonstrated that enhanced dynamic weakening (EDW) can lead to dynamic rupture of faults with much lower shear stress than required for rupture nucleation. We study the stress conditions before earthquake ruptures of different sizes that spontaneously evolve in numerical simulations of earthquake sequences on rate‐and‐state faults with EDW due to thermal pressurization of pore fluids. We find that average shear stress right before dynamic rupture (aka shear prestress) systematically varies with the rupture size. The smallest ruptures have prestress comparable to the local shear stress required for nucleation. Larger ruptures weaken the fault more, propagate over increasingly under‐stressed areas due to dynamic stress concentration, and result in progressively lower average prestress over the entire rupture. The effect is more significant in fault models with more efficient EDW. We find that, as a result, fault models with more efficient weakening produce fewer small events and result in systematically lower b‐values of the frequency‐magnitude event distributions. The findings (a) illustrate that large earthquakes can occur on faults that appear not to be critically stressed compared to stresses required for slip nucleation; (b) highlight the importance of finite‐fault modeling in relating the local friction behavior determined in the lab to the field scale; and (c) suggest that paucity of small events or seismic quiescence may be the observational indication of mature faults that operate under low shear stress due to EDW.
more »
« less
Dynamic rupture initiation and propagation in a fluid-injection laboratory setup with diagnostics across multiple temporal scales
Fluids are known to trigger a broad range of slip events, from slow, creeping transients to dynamic earthquake ruptures. Yet, the detailed mechanics underlying these processes and the conditions leading to different rupture behaviors are not well understood. Here, we use a laboratory earthquake setup, capable of injecting pressurized fluids, to compare the rupture behavior for different rates of fluid injection, slow (megapascals per hour) versus fast (megapascals per second). We find that for the fast injection rates, dynamic ruptures are triggered at lower pressure levels and over spatial scales much smaller than the quasistatic theoretical estimates of nucleation sizes, suggesting that such fast injection rates constitute dynamic loading. In contrast, the relatively slow injection rates result in gradual nucleation processes, with the fluid spreading along the interface and causing stress changes consistent with gradually accelerating slow slip. The resulting dynamic ruptures propagating over wetted interfaces exhibit dynamic stress drops almost twice as large as those over the dry interfaces. These results suggest the need to take into account the rate of the pore-pressure increase when considering nucleation processes and motivate further investigation on how friction properties depend on the presence of fluids.
more »
« less
- PAR ID:
- 10326639
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 118
- Issue:
- 51
- ISSN:
- 0027-8424
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Fluid injection stimulates seismicity far from active tectonic regions. However, the details of how fluids modify on‐fault stresses and initiate seismic events remain poorly understood. We conducted laboratory experiments using a biaxial loading apparatus with a 3 m saw‐cut granite fault and compared events induced at different levels of background shear stress. Water was injected at 10 mL/min and normal stress was constant at 4 MPa. In all experiments, aseismic slip initiated on the fault near the location of fluid injection and dynamic rupture eventually initiated from within the aseismic slipping patch. When the fault was near critically stressed, seismic slip initiated only seconds after MPa‐level injection pressures were reached and the dynamic rupture propagated beyond the fluid pressure perturbed region. At lower stress levels, dynamic rupture initiated hundreds of seconds later and was limited to regions where aseismic slip had significantly redistributed stress from within the pressurized region to neighboring locked patches. We found that the initiation of slow slip was broadly consistent with a Coulomb failure stress, but that initiation of dynamic rupture required additional criteria to be met. Even high background stress levels required aseismic slip to modify on‐fault stress to meet initiation criteria. We also observed slow slip events prior to dynamic rupture. Overall, our experiments suggest that initial fault stress, relative to fault strength, is a critical factor in determining whether a fluid‐induced rupture will “runaway” or whether a fluid‐induced rupture will remain localized to the fluid pressurized region.more » « less
-
Abstract. Substantial insight into earthquake source processes has resulted from considering frictional ruptures analogous to cohesive-zone shear cracks from fracture mechanics. This analogy holds for slip-weakening representations of fault friction that encapsulate the resistance to rupture propagation in the form of breakdown energy, analogous to fracture energy, prescribed in advance as if it were a material property of the fault interface. Here, we use numerical models of earthquake sequences with enhanced weakening due to thermal pressurization of pore fluids to show how accounting for thermo-hydro-mechanical processes during dynamic shear ruptures makes breakdown energy rupture-dependent. We find that local breakdown energy is neither a constant material property nor uniquely defined by the amount of slip attained during rupture, but depends on how that slip is achieved through the history of slip rate and dynamic stress changes during the rupture process. As a consequence, the frictional breakdown energy of the same location along the fault can vary significantly in different earthquake ruptures that pass through. These results suggest the need to reexamine the assumption of predetermined frictional breakdown energy common in dynamic rupture modeling and to better understand the factors that control rupture dynamics in the presence of thermo-hydro-mechanical processes.more » « less
-
Earthquake swarms attributed to subsurface fluid injection are usually assumed to occur on faults destabilized by increased pore-fluid pressures. However, fluid injection could also activate aseismic slip, which might outpace pore-fluid migration and transmit earthquake-triggering stress changes beyond the fluid-pressurized region. We tested this theoretical prediction against data derived from fluid-injection experiments that activated and measured slow, aseismic slip on preexisting, shallow faults. We found that the pore pressure and slip history imply a fault whose strength is the product of a slip-weakening friction coefficient and the local effective normal stress. Using a coupled shear-rupture model, we derived constraints on the hydromechanical parameters of the actively deforming fault. The inferred aseismic rupture front propagates faster and to larger distances than the diffusion of pressurized pore fluid.more » « less
-
Understanding the dynamics of microearthquakes is a timely challengewith the potential to address current paradoxes in earthquake mechanics,and to better understand earthquake ruptures induced by fluid injection.We perform fully 3D dynamic rupture simulations caused by fluidinjection on a target fault for FEAR experiments generating Mw ≤ 1earthquakes. We investigate the dynamics of rupture propagation withspatially variable stress drop caused by pore pressure changes andassuming different constitutive parameters. We show that the spontaneousarrest of propagating ruptures is possible by assuming a high faultstrength parameter S, that is, a high ratio between strength excess anddynamic stress drop. In faults with high S values (low rupturingpotential), even minor variations in Dc (from 0.45 to 0.6 mm) have asubstantial effect on the rupture propagation and the ultimateearthquake size. Our results show that modest spatial variations ofdynamic stress drop determine the rupture mode, distinguishingself-arresting from run-away ruptures. Our results suggest that severalcharacteristics inferred for accelerating dynamic ruptures differ fromthose observed during rupture deceleration of a self-arrestingearthquake. During deceleration, a decrease of peak slip velocity isassociated with a nearly constant cohesive zone size. Moreover, theresidual slip velocity value (asymptotic value for a crack-like rupture)decreases to nearly zero. This means that an initially crack-likerupture becomes a pulse-like rupture during spontaneous arrest. Insummary, our findings highlight the complex dynamics of smallearthquakes, which are partially contrasting with established crack-likemodels of earthquake rupture.more » « less