skip to main content


Title: Resource availability and heterogeneity shape the self‐organisation of regular spatial patterning
Abstract

Explaining large‐scale ordered patterns and their effects on ecosystem functioning is a fundamental and controversial challenge in ecology. Here, we coupled empirical and theoretical approaches to explore how competition and spatial heterogeneity govern the regularity of colony dispersion in fungus‐farming termites. Individuals from different colonies fought fiercely, and inter‐nest distances were greater when nests were large and resources scarce—as expected if competition is strong, large colonies require more resources and foraging area scales with resource availability. Building these principles into a model of inter‐colony competition showed that highly ordered patterns emerged under high resource availability and low resource heterogeneity. Analysis of this dynamical model provided novel insights into the mechanisms that modulate pattern regularity and the emergent effects of these patterns on system‐wide productivity. Our results show how environmental context shapes pattern formation by social‐insect ecosystem engineers, which offers one explanation for the marked variability observed across ecosystems.

 
more » « less
Award ID(s):
1753954
NSF-PAR ID:
10450079
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Ecology Letters
Volume:
24
Issue:
9
ISSN:
1461-023X
Page Range / eLocation ID:
p. 1880-1891
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Age‐related variation in reproductive performance in long‐lived iteroparous vertebrate species is common, with performance being influenced by within‐individual processes, such as improvement and senescence, in combination with among‐individual processes, such as selective appearance and disappearance. Few studies of age‐related reproductive performance have compared the role of these drivers within a metapopulation, subject to varying degrees of resource competition.

    We accounted for within‐ and among‐individual changes among known‐aged Adélie penguinsPygoscelis adeliaeduring 17 years (1997–2013), at three clustered colonies of disparate size, to understand patterns in age‐related reproductive success during early and late adulthood.

    Age at first reproduction (AFR) was lowest, and number of breeding attempts highest, at the largest colony. Regardless of AFR, success improved with early post‐recruitment experience. For both oldest and youngest recruitment groups, peak performance occurred at the end of their reproductive life span indicating a possible cost of reproduction. Intermediate recruitment groups reached peak performance in their mid‐reproductive life span and with intermediate breeding experience, before decreasing. Breeding success was lowest for the initial breeding attempt regardless of AFR, but we observed subsequent variation relative to recruitment age. Gaining experience by delaying recruitment positively influenced reproductive performance early in the reproductive life span and was most evident for the youngest breeders. Oldest recruits had the highest initial and peak breeding success. Differences in AFR resulted in trade‐offs in reproductive life span or timing of senescence but not in the overall number of breeding attempts.

    Patterns differed as a function of colony size, and thus competition for resources. Early life improvement in performance at the larger colonies was primarily due to within‐individual factors and at the largest colony, AFR. Regardless of colony size late‐life performance was positively related to the age at last reproduction, indicating selective disappearance of lower performing individuals.

    These results highlight that different life‐history strategies were equally successful, indicating that individuals can overcome potential trade‐offs associated with early‐ and late‐life performance. These results have important implications for understanding the evolution of life‐history strategies responsible for driving population change.

     
    more » « less
  2. Abstract

    Human‐mediated species introductions provide real‐time experiments in how communities respond to interspecific competition. For example, managed honey beesApis mellifera(L.) have been widely introduced outside their native range and may compete with native bees for pollen and nectar. Indeed, multiple studies suggest that honey bees and native bees overlap in their use of floral resources. However, for resource overlap to negatively impact resource collection by native bees, resource availability must also decline, and few studies investigate impacts of honey bee competition on native bee floral visits and floral resource availability simultaneously.

    In this study, we investigate impacts of increasing honey bee abundance on native bee visitation patterns, pollen diets, and nectar and pollen resource availability in two Californian landscapes: wildflower plantings in the Central Valley and montane meadows in the Sierra.

    We collected data on bee visits to flowers, pollen and nectar availability, and pollen carried on bee bodies across multiple sites in the Sierra and Central Valley. We then constructed plant‐pollinator visitation networks to assess how increasing honey bee abundance impacted perceived apparent competition (PAC), a measure of niche overlap, and pollinator specialization (d'). We also compared PAC values against null expectations to address whether observed changes in niche overlap were greater or less than what we would expect given the relative abundances of interacting partners.

    We find clear evidence of exploitative competition in both ecosystems based on the following results: (1) honey bee competition increased niche overlap between honey bees and native bees, (2) increased honey bee abundance led to decreased pollen and nectar availability in flowers, and (3) native bee communities responded to competition by shifting their floral visits, with some becoming more specialized and others becoming more generalized depending on the ecosystem and bee taxon considered.

    Although native bees can adapt to honey bee competition by shifting their floral visits, the coexistence of honey bees and native bees is tenuous and will depend on floral resource availability. Preserving and augmenting floral resources is therefore essential in mitigating negative impacts of honey bee competition. In two California ecosystems, honey bee competition decreases pollen and nectar resource availability in flowers and alters native bee diets with potential implications for bee conservation and wildlands management.

     
    more » « less
  3. Abstract

    While the tendency to return to previously visited locations—termed ‘site fidelity’—is common in animals, the cause of this behaviour is not well understood. One hypothesis is that site fidelity is shaped by an animal's environment, such that animals living in landscapes with predictable resources have stronger site fidelity. Site fidelity may also be conditional on the success of animals’ recent visits to that location, and it may become stronger with age as the animal accumulates experience in their landscape. Finally, differences between species, such as the way memory shapes site attractiveness, may interact with environmental drivers to modulate the strength of site fidelity.

    We compared inter‐year site fidelity in 669 individuals across eight ungulate species fitted with GPS collars and occupying a range of environmental conditions in North America and Africa. We used a distance‐based index of site fidelity and tested hypothesized drivers of site fidelity using linear mixed effects models, while accounting for variation in annual range size.

    Mule deerOdocoileus hemionusand mooseAlces alcesexhibited relatively strong site fidelity, while wildebeestConnochaetes taurinusand barren‐ground caribouRangifer tarandus grantihad relatively weak fidelity. Site fidelity was strongest in predictable landscapes where vegetative greening occurred at regular intervals over time (i.e. high temporal contingency). Species differed in their response to spatial heterogeneity in greenness (i.e. spatial constancy). Site fidelity varied seasonally in some species, but remained constant over time in others. Elk employed a ‘win‐stay, lose‐switch’ strategy, in which successful resource tracking in the springtime resulted in strong site fidelity the following spring. Site fidelity did not vary with age in any species tested.

    Our results provide support for the environmental hypothesis, particularly that regularity in vegetative phenology shapes the strength of site fidelity at the inter‐annual scale. Large unexplained differences in site fidelity suggest that other factors, possibly species‐specific differences in attraction to known sites, contribute to variation in the expression of this behaviour.

    Understanding drivers of variation in site fidelity across groups of organisms living in different environments provides important behavioural context for predicting how animals will respond to environmental change.

     
    more » « less
  4. Abstract Aim

    Animal movement is an important determinant of individual survival, population dynamics and ecosystem structure and function. Nonetheless, it is still unclear how local movements are related to resource availability and the spatial arrangement of resources. Using resident bird species and migratory bird species outside the migratory period, we examined how the distribution of resources affects the movement patterns of both large terrestrial birds (e.g., raptors, bustards and hornbills) and waterbirds (e.g., cranes, storks, ducks, geese and flamingos).

    Location

    Global.

    Time period

    2003–2015.

    Major taxa studied

    Birds.

    Methods

    We compiled GPS tracking data for 386 individuals across 36 bird species. We calculated the straight‐line distance between GPS locations of each individual at the 1‐hr and 10‐day time‐scales. For each individual and time‐scale, we calculated the median and 0.95 quantile of displacement. We used linear mixed‐effects models to examine the effect of the spatial arrangement of resources, measured as enhanced vegetation index homogeneity, on avian movements, while accounting for mean resource availability, body mass, diet, flight type, migratory status and taxonomy and spatial autocorrelation.

    Results

    We found a significant effect of resource spatial arrangement at the 1‐hr and 10‐day time‐scales. On average, individual movements were seven times longer in environments with homogeneously distributed resources compared with areas of low resource homogeneity. Contrary to previous work, we found no significant effect of resource availability, diet, flight type, migratory status or body mass on the non‐migratory movements of birds.

    Main conclusions

    We suggest that longer movements in homogeneous environments might reflect the need for different habitat types associated with foraging and reproduction. This highlights the importance of landscape complementarity, where habitat patches within a landscape include a range of different, yet complementary resources. As habitat homogenization increases, it might force birds to travel increasingly longer distances to meet their diverse needs.

     
    more » « less
  5. Changing climatic conditions are shaping how density mediates resource competition. Colonies of the seed-eating red harvester ant, Pogonomyrmex barbatus, live for about 30 years in desert grassland. They compete with con- specific neighbors for foraging area in which to search for seeds. This study draws on a long-term census of a population of about 300 colonies from 1988 to 2019 at a site near Rodeo, New Mexico, USA. Rainfall was high in the first decade of the study, and then declined as a severe drought began in about 2001–2003. We examine the effects on colony survival and recruitment of the spatial configuration of the local neighborhood of conspecific neighbors, using Voronoi polygons as a measure of a colony’s foraging area, and consider how changing rainfall influences the effects of local neighborhoods. The results show that a colony’s chances of surviving to the next year depend on its age and on the foraging area available in its local neighborhood. Recruitment, measured as a founding colony’s chance of surviving to be 1 year old, depends on rainfall. In the earlier years of the study, when rainfall was high, colony numbers increased, and then began to decline after about 1997–1999, appar- ently due to crowding. As rainfall decreased, beginning in about 2001–2003, recruitment declined, and so did colony survival, leading to a trend toward earlier colony death which was most pronounced in 2016. As rainfall declined, apparently decreasing food availability, more foraging area was needed to sus- tain a colony: although the number of colonies declined, the impact of crowding by intraspecific neighbors increased. These processes maintain over- dispersion on the scale of about 8 m, with transient clustering at larger spatial scales. In addition, other factors besides crowding, such as the colony’s regula- tion of foraging activity to manage water loss, appear to contribute to a col- ony’s survival. The adaptive capacity for selection on the collective behavior that regulates foraging activity may determine how the population responds to ongoing climate change and drought. 
    more » « less