skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A semi-automated instrument for cellular oxidative potential evaluation (SCOPE) of water-soluble extracts of ambient particulate matter
Abstract. Several automated instruments exist to measure the acellularoxidative potential (OP) of ambient particulate matter (PM). However,cellular OP of the ambient PM is still measured manually, which severelylimits the comparison between two types of assays. Cellular assays couldprovide a more comprehensive assessment of the PM-induced oxidative stress,as they incorporate more biological processes involved in the PM-catalyzedreactive oxygen species (ROS) generation. Considering this need, wedeveloped a semi-automated instrument, the first of its kind, for measuring thecellular OP based on a macrophage ROS assay using rat alveolar macrophages.The instrument named SCOPE – semi-automated instrument for cellularoxidative potential evaluation – uses dichlorofluorescein diacetate (DCFH-DA)as a probe to detect the OP of PM samples extracted in water. SCOPE iscapable of analyzing a batch of six samples (including one negative and onepositive control) in 5 h and is equipped to operate continuously for24 h with minimal manual intervention after every batch of analysis,i.e., after every 5 h. SCOPE has a high analytical precision asassessed from both positive controls and ambient PM samples (coefficient of variation (CoV)<17 %). The results obtained from the instrument were in good agreementwith manual measurements using tert-butyl hydroperoxide (t-BOOH) as thepositive control (slope =0.83 for automated vs. manual, R2=0.99)and ambient samples (slope =0.83, R2=0.71). We furtherdemonstrated the ability of SCOPE to analyze a large number of both ambientand laboratory samples and developed a dataset on the intrinsic cellular OPof several compounds, such as metals, quinones, polycyclic aromatichydrocarbons (PAHs) and inorganic salts, commonly known to be present inambient PM. This dataset is potentially useful in future studies toapportion the contribution of key chemical species in the overall cellularOP of ambient PM.  more » « less
Award ID(s):
1847237
PAR ID:
10326658
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Atmospheric Measurement Techniques
Volume:
14
Issue:
12
ISSN:
1867-8548
Page Range / eLocation ID:
7579 to 7593
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Wildfires, which have been occurring increasingly in the era of climate change, emit massive amounts of particulate matter (PM) into the atmosphere, strongly affecting air quality and public health. Biomass burning aerosols may contain environmentally persistent free radicals (EPFRs, such as semiquinone radicals) and redox-active compounds that can generate reactive oxygen species (ROS, including ·OH, superoxide and organic radicals) in the aqueous phase. However, there is a lack of data on EPFRs and ROS associated with size-segregated wildfire PM, which limits our understanding of their climate and health impacts. We collected size-segregated ambient PM in Southern California during two wildfire events to measure EPFRs and ROS using electron paramagnetic resonance spectroscopy. EPFRs are likely associated with soot particles as they are predominantly observed in submicron particles (PM 1 , aerodynamic diameter ≤ 1 μm). Upon extraction in water, wildfire PM mainly generates ·OH (28–49%) and carbon-centered radicals (∼50%) with minor contributions from superoxide and oxygen-centered organic radicals (2–15%). Oxidative potential measured with the dithiothreitol assay (OP-DTT) is found to be high in wildfire PM 1 , exhibiting little correlation with the radical forms of ROS ( r 2 ≤ 0.02). These results are in stark contrast with PM collected at highway and urban sites, which generates predominantly ·OH (84–88%) that correlates well with OP-DTT ( r 2 ∼ 0.6). We also found that PM generated by flaming combustion generates more radicals with higher OP-DTT compared to those by smoldering or pyrolysis. 
    more » « less
  2. Abstract Most fine ambient particulate matter (PM2.5)-based epidemiological models use globalized concentration-response (CR) functions assuming that the toxicity of PM2.5is solely mass-dependent without considering its chemical composition. Although oxidative potential (OP) has emerged as an alternate metric of PM2.5toxicity, the association between PM2.5mass and OP on a large spatial extent has not been investigated. In this study, we evaluate this relationship using 385 PM2.5samples collected from 14 different sites across 4 different continents and using 5 different OP (and cytotoxicity) endpoints. Our results show that the relationship between PM2.5mass vs. OP (and cytotoxicity) is largely non-linear due to significant differences in the intrinsic toxicity, resulting from a spatially heterogeneous chemical composition of PM2.5. These results emphasize the need to develop localized CR functions incorporating other measures of PM2.5properties (e.g., OP) to better predict the PM2.5-attributed health burdens. 
    more » « less
  3. Abstract Experimentation at sea provides insight into which traits of ocean microbes are linked to performance in situ. Here we show distinct patterns in thermal tolerance of microbial phototrophs from adjacent water masses sampled in the south-west Pacific Ocean, determined using a fluorescent marker for reactive oxygen species (ROS). ROS content of pico-eukaryotes was assessed after 1, 5 and 25 h of incubation along a temperature gradient (15.6–32.1 °C). Pico-eukaryotes from the East Australian Current (EAC) had relatively constant ROS and showed greatest mortality after 25 h at 7 °C below ambient, whereas those from the Tasman Sea had elevated ROS in both warm and cool temperature extremes and greatest mortality at temperatures 6–10 °C above ambient, interpreted as the outcome of thermal stress. Tracking of water masses within an oceanographic circulation model showed populations had distinct thermal histories, with EAC pico-eukaryotes experiencing higher average temperatures for at least 1 week prior to sampling. While acclimatization and community assembly could both influence biological responses, this study clearly demonstrates that phenotypic divergence occurs along planktonic drift trajectories. 
    more » « less
  4. Transition metals in particulate matter (PM) are hypothesized to have enhanced toxicity based on their oxidative potential (OP). The acellular dithiothreitol (DTT) assay is widely used to measure the OP of PM and its chemical components. In our prior study, we showed that the DTT assay (pH 7.4, 0.1 M phosphate buffer, 37 °C) provides favorable thermodynamic conditions for precipitation of multiple metals present in PM. This study utilizes multiple techniques to characterize the precipitation of aqueous metals present at low concentrations in the DTT assay. Metal precipitation was identified using laser particle light scattering analysis, direct chemical measurement of aqueous metal removal, and microscopic imaging. Experiments were run with aqueous metals from individual metal salts and a well-characterized urban PM standard (NIST SRM-1648a, Urban Particulate Matter). Our results demonstrated rapid precipitation of metals in the DTT assay. Metal precipitation was independent of DTT but dependent on metal concentration. Metal removal in the chemically complex urban PM samples exceeded the thermodynamic predictions and removal seen in single metal salt experiments, suggesting co-precipitation and/or adsorption may have occurred. These results have broad implications for other acellular assays that study PM metals using phosphate buffer, and subsequently, the PM toxicity inferred from these assays. 
    more » « less
  5. Harmful algal blooms (HABs) in lakes and estuaries, caused by cyanobacteria, pose various threats to humans and the environment. Cyanobacteria produce microcystins (MCs) that make animals and people sick. Once airborne, cyanobacterial aerosols are rapidly transformed through heterogeneous reactions with atmospheric oxidants, which tend to occur much faster in air than in water. The important aspects of these transformations include the degradation of MCs and the production of reactive oxygen species (ROS) from oxidized organic matter (OM) in cyanobacterial aerosol. In this study, MCs in aerosols and water samples, collected in lakes (Lake Okeechobee, Georges Lake, and Doctors Lake) of Florida during HABs, were measured using enzyme-linked immunosorbent assay kits. Organic hydroperoxides (OHP) and the oxidative potential (OP) associated with aerosols collected at Doctors Lake were measured with 4-nitrophenylboronic acid and dithiothreitol assays, respectively. The decay of MCs and the evolution of ROS in cyanobacterial aerosols were also demonstrated in an outdoor chamber under ambient sunlight. MC concentrations (0.4–2.1 μg/L) during HAB periods were higher than the US EPA guideline (0.3 μg/L for pre-school age and 1.6 μg/L for school-age and above). Airborne MC concentrations ranged from 0.2 to 5.7 ng/m3. Regulations for airborne MC concentrations are yet to be established. In both field and chamber data, MCs decomposed but ROS substantially increased as aerosols atmospherically oxidized. Aerosolized OM concentrations during HABs were higher than those in dormant periods. OM in cyanobacterial aerosols was enriched at estuary Doctors Lake with high inorganic salt concentrations due to salting-out of water-soluble organics into lake-surface layers. Aerosolized OM concentrations were positively corelated to OP and OHP (r = 0.96 and 0.85, respectively) at Doctors Lake suggesting that cyanobacterial aerosols might adversely influence respiratory health. The longitudinal health impacts of aerosolized cyanobacteria emitted from HABs should be investigated in the future. 
    more » « less