High-latitude meromictic lakes such as those in the Antarctic McMurdo Dry Valleys (MDV) harbor aquatic ecosystems dominated by the microbial loop. Within this habitat, which is limited year-round by light and nutrients, protists, or single celled eukaryotes, play outsized roles in the food web as the dominant primary producers and the apex predators. Thus, the MDV lake ecosystem represents an ideal system to study the role of sentinel protist taxa in carbon and nutrient cycling. The perennially ice-covered lakes are part of the McMurdo Long Term Ecological Research (McM LTER; mcmlter.org) established in 1993. In this review we will highlight the diversity and trophic roles of the MDV lake protist community and compare environmental factors driving spatiotemporal patterns in key protist taxa in two lakes within the McM LTER, Lakes Bonney and Fryxell. We will then discuss lessons learned from manipulated experiments on the impact of current and future climate-driven environmental change on sensitive protist taxa. Last, we will integrate knowledge gained from 25 years of lab-controlled experiments on key photosynthetic protists to extend our understanding of the function of these extremophiles within the MDV aquatic food webs. Our research group has studied the distribution and function of the MDV microbial community for nearly two decades, training the next generation of scientists to tackle future problems of these globally significant microbes. This review article will also highlight early career scientists who have contributed to this body of work and represent the future of scientific understanding in the Anthropocene.
more »
« less
Aquatic Macrophytes Are Associated With Variation in Biogeochemistry and Bacterial Assemblages of Mountain Lakes
In aquatic systems, microbes likely play critical roles in biogeochemical cycling and ecosystem processes, but much remains to be learned regarding microbial biogeography and ecology. The microbial ecology of mountain lakes is particularly understudied. We hypothesized that microbial distribution among lakes is shaped, in part, by aquatic plant communities and the biogeochemistry of the lake. Specifically, we investigated the associations of yellow water lilies ( Nuphar polysepala) with the biogeochemistry and microbial assemblages within mountain lakes at two scales: within a single lake and among lakes within a mountain range. We first compared the biogeochemistry of lakes without water lilies to those colonized to varying degrees by water lilies. Lakes with >10% of the surface occupied by water lilies had lower pH and higher dissolved organic carbon than those without water lilies and had a different microbial composition. Notably, cyanobacteria were negatively associated with water lily presence, a result consistent with the past observation that macrophytes outcompete phytoplankton and can suppress cyanobacterial and algal blooms. To examine the influence of macrophytes on microbial distribution within a lake, we characterized microbial assemblages present on abaxial and adaxial water lily leaf surfaces and in the water column. Microbial diversity and composition varied among all three habitats, with the highest diversity of microbes observed on the adaxial side of leaves. Overall, this study suggests that water lilies influence the biogeochemistry and microbiology of mountains lakes.
more »
« less
- Award ID(s):
- 1655726
- PAR ID:
- 10326768
- Date Published:
- Journal Name:
- Frontiers in Microbiology
- Volume:
- 12
- ISSN:
- 1664-302X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Stream and lake fishes are important economic and recreational resources that respond to alterations in their surrounding watersheds and serve as indicators of ecological stressors on aquatic ecosystems. Research suggests that fish species diversity is largely influenced by surface water connectivity, or the lack thereof; however, few studies consider freshwater connections and their effect on both lake and stream fish communities across broad spatial extents. We used fish data from 559 lakes and 854 streams from the midwestern–northeastern United States to examine the role of surface water connectivity on fish species richness and community composition. We found that although lakes and streams share many species, connectivity had a positive effect on species richness across lakes and streams and helped explain species composition. Taking an integrated approach that includes both lake and stream fish communities and connectivity among freshwaters helps inform scientific understanding of what drives variation in fish species diversity at broad spatial scales and can help managers who are faced with planning for state-, regional-, or national-scale monitoring and restoration.more » « less
-
The McMurdo Dry Valleys are a cold and arid environment with low biomass relative to most ice- free environments. The ice-covered lakes in the valleys, however, provide a refuge for diverse microbial communities where liquid water persists year-round. Within these lakes, benthic micro- bial assemblages form ornate structures in the absence of burrowing and grazing organisms. In Lake Vanda, the microbial communities create pinnacles with features including tip, web, and ridge ornaments and brown, green, purple, and beige pigmented zones. Bacterial 16S rRNA gene composition differed between lake depths for all sampled features. Within each depth, community composition correlated with the relative distance into the pinnacle and there were also some significant differences between assemblages in certain zones. The bacterial community composi- tion in the zones may reflect how they respond to environmental changes as the mat is buried, altering the internal light environment and affecting 16S rRNA gene assemblages across niches from the surface to the interior.more » « less
-
Mendoza-Lera, Clara (Ed.)The microbial communities of lake sediments have the potential to serve as valuable bioindicators and integrators of watershed land-use and water quality; however, the relative sensitivity of these communities to physio-chemical and geographical parameters must be demonstrated at taxonomic resolutions that are feasible by current sequencing and bioinformatic approaches. The geologically diverse and lake-rich state of Minnesota (USA) is uniquely situated to address this potential because of its variability in ecological region, lake type, and watershed land-use. In this study, we selected twenty lakes with varying physio-chemical properties across four ecological regions of Minnesota. Our objectives were to (i) evaluate the diversity and composition of the bacterial community at the sediment-water interface and (ii) determine how lake location and watershed land-use impact aqueous chemistry and influence bacterial community structure. Our 16S rRNA amplicon data from lake sediment cores, at two depth intervals, data indicate that sediment communities are more likely to cluster by ecological region rather than any individual lake properties ( e . g ., trophic status, total phosphorous concentration, lake depth). However, composition is tied to a given lake, wherein samples from the same core were more alike than samples collected at similar depths across lakes. Our results illustrate the diversity within lake sediment microbial communities and provide insight into relationships between taxonomy, physicochemical, and geographic properties of north temperate lakes.more » « less
-
Abstract The perennial ice-covered lakes of the Antarctic McMurdo Dry Valleys harbour oligotrophic microbial communities that are separated geographically from other aquatic systems. Their microbiomes include planktonic microbes as well as lift-off mat communities that emerge from the ice. We used the ShortBRED protein family profiler to quantify the antibiotic resistance genes (ARGs) from metagenomes of lift-off mats emerging from ice and from filtered water samples of Lake Fryxell and Lake Bonney. The overall proportion of ARG hits was similar to that found in temperate-zone rural ponds with moderate human inputs. Specific ARGs showed distinct distributions for the two lakes and for mat vs planktonic sources. Metagenomic taxa distributions showed that mat phototrophs consisted mainly of cyanobacteria or Betaproteobacteria, whereas the water column phototrophs were mainly protists. An enrichment culture of the Betaproteobacterium Rhodoferax antarcticus from a Lake Fryxell mat sample showed an unusual mat-forming phenotype not previously reported for this species. Its genome showed no ARGs associated with Betaproteobacteria but had ARGs consistent with a minor Pseudomonas component. The Antarctic lake mats and water showed specific ARGs distinctive to the mat and water sources, but overall ARG levels were similar to those of temperate water bodies with moderate human inputs.more » « less
An official website of the United States government

