Positroids are certain representable matroids originally studied by Post- nikov in connection with the totally nonnegative Grassmannian and now used widely in algebraic combinatorics. The positroids give rise to determinantal equations defin- ing positroid varieties as subvarieties of the Grassmannian variety. Rietsch, Knutson– Lam–Speyer and Pawlowski studied geometric and cohomological properties of these varieties. In this paper, we continue the study of the geometric properties of positroid varieties by establishing several equivalent conditions characterizing smooth positroid varieties using a variation of pattern avoidance defined on decorated permutations, which are in bijection with positroids. Furthermore, we give a combinatorial method for determining the dimension of the tangent space of a positroid variety at key points using an induced subgraph of the Johnson graph. We also give a Bruhat interval char- acterization of positroids.
more »
« less
Quotients of Uniform Positroids
Two matroids $$M$$ and $$N$$ are said to be concordant if there is a strong map from $$N$$ to $$M$$. This also can be stated by saying that each circuit of $$N$$ is a union of circuits of $$M$$. In this paper, we consider a class of matroids called positroids, introduced by Postnikov, and utilize their combinatorics to determine concordance among some of them. More precisely, given a uniform positroid, we give a purely combinatorial characterization of a family of positroids that is concordant with it. We do this by means of their associated decorated permutations. As a byproduct of our work, we describe completely the collection of circuits of this particular subset of positroids.
more »
« less
- Award ID(s):
- 1802986
- PAR ID:
- 10326787
- Date Published:
- Journal Name:
- The Electronic Journal of Combinatorics
- Volume:
- 29
- Issue:
- 1
- ISSN:
- 1077-8926
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Leclerc and Zelevinsky, motivated by the study of quasi-commuting quantum flag minors, introduced the notions of strongly separated and weakly separated collections. These notions are closely related to the theory of cluster algebras, to the combinatorics of the double Bruhat cells, and to the totally positive Grassmannian. A key feature, called the purity phenomenon, is that every maximal by inclusion strongly (resp., weakly) separated collection of subsets in $[n]$ has the same cardinality. In this paper, we extend these notions and define $$\mathcal{M}$$-separated collections for any oriented matroid $$\mathcal{M}$$. We show that maximal by size $$\mathcal{M}$$-separated collections are in bijection with fine zonotopal tilings (if $$\mathcal{M}$$ is a realizable oriented matroid), or with one-element liftings of $$\mathcal{M}$$ in general position (for an arbitrary oriented matroid). We introduce the class of pure oriented matroids for which the purity phenomenon holds: an oriented matroid $$\mathcal{M}$$ is pure if $$\mathcal{M}$$-separated collections form a pure simplicial complex, i.e., any maximal by inclusion $$\mathcal{M}$$-separated collection is also maximal by size. We pay closer attention to several special classes of oriented matroids: oriented matroids of rank $$3$$, graphical oriented matroids, and uniform oriented matroids. We classify pure oriented matroids in these cases. An oriented matroid of rank $$3$$ is pure if and only if it is a positroid (up to reorienting and relabeling its ground set). A graphical oriented matroid is pure if and only if its underlying graph is an outerplanar graph, that is, a subgraph of a triangulation of an $$n$$-gon. We give a simple conjectural characterization of pure oriented matroids by forbidden minors and prove it for the above classes of matroids (rank $$3$$, graphical, uniform).more » « less
-
Abstract We initiate the study of a class of polytopes, which we coinpolypositroids, defined to be those polytopes that are simultaneously generalized permutohedra (or polymatroids) and alcoved polytopes. Whereas positroids are the matroids arising from the totally nonnegative Grassmannian, polypositroids are “positive” polymatroids. We parametrize polypositroids using Coxeter necklaces and balanced graphs, and describe the cone of polypositroids by extremal rays and facet inequalities. We introduce a notion of$$(W,c)$$-polypositroidfor a finite Weyl groupWand a choice of Coxeter elementc. We connect the theory of$$(W,c)$$-polypositroids to cluster algebras of finite type and to generalized associahedra. We discussmembranes, which are certain triangulated 2-dimensional surfaces inside polypositroids. Membranes extend the notion of plabic graphs from positroids to polypositroids.more » « less
-
Abstract We show that the base polytopePMof any paving matroidMcan be systematically obtained from a hypersimplex by slicing off certain subpolytopes, namely base polytopes of lattice path matroids corresponding to panhandle-shaped Ferrers diagrams. We calculate the Ehrhart polynomials of these matroids and consequently write down the Ehrhart polynomial ofPM, starting with Katzman’s formula for the Ehrhart polynomial of a hypersimplex. The method builds on and generalizes Ferroni’s work on sparse paving matroids. Combinatorially, our construction corresponds to constructing a uniform matroid from a paving matroid by iterating the operation ofstressed-hyperplane relaxationintroduced by Ferroni, Nasr and Vecchi, which generalizes the standard matroid-theoretic notion of circuit-hyperplane relaxation. We present evidence that panhandle matroids are Ehrhart positive and describe a conjectured combinatorial formula involving chain forests and Eulerian numbers from which Ehrhart positivity of panhandle matroids will follow. As an application of the main result, we calculate the Ehrhart polynomials of matroids associated with Steiner systems and finite projective planes, and show that they depend only on their design-theoretic parameters: for example, while projective planes of the same order need not have isomorphic matroids, their base polytopes must be Ehrhart equivalent.more » « less
-
Ta-Shma, Amnon (Ed.)We initiate the study of generalized AC⁰ circuits comprised of arbitrary unbounded fan-in gates which only need to be constant over inputs of Hamming weight ≥ k (up to negations of the input bits), which we denote GC⁰(k). The gate set of this class includes biased LTFs like the k-OR (outputs 1 iff ≥ k bits are 1) and k-AND (outputs 0 iff ≥ k bits are 0), and thus can be seen as an interpolation between AC⁰ and TC⁰. We establish a tight multi-switching lemma for GC⁰(k) circuits, which bounds the probability that several depth-2 GC⁰(k) circuits do not simultaneously simplify under a random restriction. We also establish a new depth reduction lemma such that coupled with our multi-switching lemma, we can show many results obtained from the multi-switching lemma for depth-d size-s AC⁰ circuits lifts to depth-d size-s^{.99} GC⁰(.01 log s) circuits with no loss in parameters (other than hidden constants). Our result has the following applications: - Size-2^Ω(n^{1/d}) depth-d GC⁰(Ω(n^{1/d})) circuits do not correlate with parity (extending a result of Håstad (SICOMP, 2014)). - Size-n^Ω(log n) GC⁰(Ω(log² n)) circuits with n^{.249} arbitrary threshold gates or n^{.499} arbitrary symmetric gates exhibit exponentially small correlation against an explicit function (extending a result of Tan and Servedio (RANDOM, 2019)). - There is a seed length O((log m)^{d-1}log(m/ε)log log(m)) pseudorandom generator against size-m depth-d GC⁰(log m) circuits, matching the AC⁰ lower bound of Håstad up to a log log m factor (extending a result of Lyu (CCC, 2022)). - Size-m GC⁰(log m) circuits have exponentially small Fourier tails (extending a result of Tal (CCC, 2017)).more » « less
An official website of the United States government

