skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Polymer Glasses
Polymers exist in the glass state for a wide range of applications. The slow and limited crystallizability of polymers means that solid polymer materials are either wholly or in part glassy, giving them great importance. The glass is a nonequilibrium amorphous state that occurs because the cooperative molecular dynamics become kinetically trapped on cooling as the available thermal energy for molecular motion decreases. This article aims to provide the reader with a molecular picture of what this packing frustration that causes glass formation means for polymers. Experimental considerations for accurately measuring the glass transition temperature 𝑇𝑔 given this nonequilibrium nature will be discussed. Basic concepts underpinning theoretical efforts to model the glass transition will be summarized to provide the reader with a lexicon and paradigm for understanding different approaches used in the field to capture the main characteristics of glasses. Current research areas of interest in polymer glasses will be briefly outlined. Hopefully, this article will provide the beginning investigator a starting point for their own studies.  more » « less
Award ID(s):
1905782
PAR ID:
10326922
Author(s) / Creator(s):
Editor(s):
Matyjaszewski, Krzysztof; Gnanou, Yves; Hadjichristidis, Nikos; Muthukumar, Murugappan
Date Published:
Journal Name:
Macromolecular Engineering: From Precise Synthesis to Macroscopic Materials and Applications
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Over the past three decades, studies have indicated a mobile surface layer with steep gradients on glass surfaces. Among various glasses, polymers are unique because intramolecular interactions — combined with chain connectivity — can alter surface dynamics, but their fundamental role has remained elusive. By devising polymer surfaces occupied by chain loops of various penetration depths, combined with surface dissipation experiments and Monte Carlo simulations, we demonstrate that the intramolecular dynamic coupling along surface chains causes the sluggish bulk polymers to suppress the fast surface dynamics. Such effect leads to that accelerated segmental relaxation on polymer glass surfaces markedly slows when the surface polymers extend chain loops deeper into the film interior. The surface mobility suppression due to the intramolecular coupling reduces the magnitude of the reduction in glass transition temperature commonly observed in thin films, enabling new opportunities for tailoring polymer properties at interfaces and under confinement and producing glasses with enhanced thermal stability. 
    more » « less
  2. Abstract Conjugated polymers are emerging as promising building blocks for a broad range of modern applications including skin‐like electronics, wearable optoelectronics, and sensory technologies. In the past three decades, the optical and electronic properties of conjugated polymers have been extensively studied, while their thermomechanical properties, especially the glass transition phenomenon which fundamentally represents the polymer chain dynamics, have received much less attention. Currently, there is a lack of design rules that underpin the glass transition temperature of these semirigid conjugated polymers, putting a constraint on the rational polymer design for flexible stretchable devices and stable polymer glass that is needed for the devices’ long‐term morphology stability. In this review article, the glass transition phenomenon for polymers, glass transition theories, and characterization techniques are first discussed. Then previous studies on the glass transition phenomenon of conjugated polymers are reviewed and a few empirical design rules are proposed to fine‐tune the glass transition temperature for conjugated polymers. The review paper is finished with perspectives on future directions on studying the glass transition phenomena of conjugated polymers. The goal of this perspective is to draw attention to challenges and opportunities of controlling, predicting, and designing polymeric semiconductors, specifically to accommodate their end use. 
    more » « less
  3. Water is essential for all active life processes. Despite this, there are a number of organisms that can survive prolonged desiccation. The vitrification hypothesis posits that such organisms survive desiccation by forming non-crystalline amorphous (vitrified) solids, often through the accumulation of protective disaccharides. In line with this theory, vitrification has been shown to be essential for desiccation tolerance in many organisms that survive extreme drying. However, it is known that not all vitrified materials are protective and that certain physio-chemical properties correlate with the protection in the glassy state. Furthermore, recent evidence suggests that the physio-chemical properties that correlate with protection can vary depending on the chemical nature of similarly sized protectants. While the chemistry of protectants has been probed in relation to the protective properties they induce when vitrified, the effect of protectant size on glassy properties and protection during drying has not been investigated. Here, we study the effect of the polymer size of sucrose on glassy properties associated with protection in the vitrified state. The monomer sucrose, and the polymers polysucrose 70 and polysucrose 400 (70 and 400 refer to the molecular weight of the polymers in kDa). Using these three different-sized sucrose polymers, we find that each of the glassy properties we investigated including; enzyme protection, water content, glass transition temperature, and glass former fragility, were affected by polymer size. However, only one vitrified property, glass transition temperature, correlated with protection during drying. This correlation is heavily dependent on sucrose polymer size. Increased glass transition midpoint temperature correlated positively with protection conferred by monomeric sucrose (p-value = 0.009,R2= 0.840), whereas this correlation was bi-phasic for polysucrose 70, and had an inverse relationship for polysucrose 400 (p-value = 0.120, R2 = 0.490). Our results indicate that the size of vitrifying protectants can have a profound effect on glassy properties as well as on how these properties correlate with protection in the dry state. Beyond desiccation tolerance, these findings provide insights for the development of new technologies for the stabilization of biological material in the dry state. 
    more » « less
  4. We explore the effect of confinement and polymer–nanoparticle interactions on the viscosity of unentangled polymers undergoing capillary rise infiltration (CaRI) in dense packings of nanoparticles. In CaRI, a polymer is thermally induced to wick into the dense packings of nanoparticles, leading to the formation of polymer-infiltrated nanoparticle films, a new class of thin film nanocomposites with extremely high concentrations of nanoparticles. To understand the effect of this extreme nanoconfinement, as well as polymer–nanoparticle interactions on the polymer viscosity in CaRI films, we use two polymers that are known to have very different interactions with SiO 2 nanoparticles. Using in situ spectroscopic ellipsometry, we monitor the polymer infiltration process, from which we infer the polymer viscosity based on the Lucas–Washburn model. Our results suggest that physical confinement increases the viscosity by approximately two orders of magnitude. Furthermore, confinement also increases the glass transition temperature of both polymers. Thus, under extreme nanoconfinement, the physical confinement has a more significant impact than the polymer–nanoparticle interactions on the viscosity of unentangled polymers, measured through infiltration dynamics, as well as the glass transition temperature. These findings will provide fundamental frameworks for designing processes to enable the fabrication of CaRI nanocomposite films with a wide range of nanoparticles and polymers. 
    more » « less
  5. Efforts to develop polymer precursor electrolytes that offer properties anticipated to be similar or superior to (lithium phosphorus oxynitride, LiPON) glasses are reported. Such precursors offer the potential to be used to process LiPON-like thin glass/ceramic coatings for use in all solid state batteries, ASBs. Here, LiPON glasses provide a design basis for the synthesis of sets of oligomers/polymers by lithiation of OP(NH2)3−x(NH)x [from OP(NH)3],OP-(NH2)3‑x(NHSiMe3)x and [PN]3(NHSiMe3)6−x(NH)x. The resulting systems have degrees of polymerization of 5−20. Treatment with selected amounts of LiNH2 provides varying degrees of lithiation and Li+ conducting properties commensurate with Li+ content. Polymer electrolytes impregnated in/on Celgard exhibit Li+ conductivities up to ∼1 × 10−5S cm−1 at room temperature and are thermally stable to ∼150 °C. A Li−S battery assembled using a Li6SiPON composition polymer electrolyte exhibits an initial reversible capacity of 1500 mAhgsulfur −1 and excellent cycle performance at 0.25 and 0.5 C rate over 120 cycles at room temperature. 
    more » « less