skip to main content


Title: Preservation of early Tonian macroalgal fossils from the Dolores Creek Formation, Yukon
Abstract The rise of eukaryotic macroalgae in the late Mesoproterozoic to early Neoproterozoic was a critical development in Earth’s history that triggered dramatic changes in biogeochemical cycles and benthic habitats, ultimately resulting in ecosystems habitable to animals. However, evidence of the diversification and expansion of macroalgae is limited by a biased fossil record. Non-mineralizing organisms are rarely preserved, occurring only in exceptional environments that favor fossilization. Investigating the taphonomy of well-preserved macroalgae will aid in identifying these target environments, allowing ecological trends to be disentangled from taphonomic overprints. Here we describe the taphonomy of macroalgal fossils from the Tonian Dolores Creek Formation (ca. 950 Ma) of northwestern Canada (Yukon Territory) that preserves cm-scale macroalgae. Analytical microscopy, including scanning electron microscopy and tomographic x-ray microscopy, was used to investigate fossil preservation, which was the result of a combination of pyritization and aluminosilicification, similar to accessory mineralization observed in Paleozoic Burgess Shale-type fossils. These new Neoproterozoic fossils help to bridge a gap in the fossil record of early algae, offer a link between the fossil and molecular record, and provide new insights into evolution during the Tonian Period, when many eukaryotic lineages are predicted to have diversified.  more » « less
Award ID(s):
1652351
NSF-PAR ID:
10326944
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Scientific Reports
Volume:
12
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Molecular phylogenetic data suggest that photosynthetic eukaryotes first evolved in freshwater environments in the early Proterozoic and diversified into marine environments by the Tonian Period, but early algal evolution is poorly reflected in the fossil record. Here, we report newly discovered, millimeter- to centimeter-scale macrofossils from outer-shelf marine facies of the ca. 950–900 Ma (Re-Os minimum age constraint = 898 ± 68 Ma) Dolores Creek Formation in the Wernecke Mountains, northwestern Canada. These fossils, variably preserved by iron oxides and clay minerals, represent two size classes. The larger forms feature unbranching thalli with uniform cells, differentiated cell walls, longitudinal striations, and probable holdfasts, whereas the smaller specimens display branching but no other diagnostic features. While the smaller population remains unresolved phylogenetically and may represent cyanobacteria, we interpret the larger fossils as multicellular eukaryotic macroalgae with a plausible green algal affinity based on their large size and presence of rib-like wall ornamentation. Considered as such, the latter are among the few green algae and some of the largest macroscopic eukaryotes yet recognized in the early Neoproterozoic. Together with other Tonian fossils, the Dolores Creek fossils indicate that eukaryotic algae, including green algae, colonized marine environments by the early Neoproterozoic Era. 
    more » « less
  2. Animals originated and evolved during a unique time in Earth history—the Neoproterozoic Era. This paper aims to discuss (1) when landmark events in early animal evolution occurred, and (2) the environmental context of these evolutionary milestones, and how such factors may have affected ecosystems and body plans. With respect to timing, molecular clock studies—utilizing a diversity of methodologies—agree that animal multicellularity had arisen by ∼800 million years ago (Ma) (Tonian period), the bilaterian body plan by ∼650 Ma (Cryogenian), and divergences between sister phyla occurred ∼560–540 Ma (late Ediacaran). Most purported Tonian and Cryogenian animal body fossils are unlikely to be correctly identified, but independent support for the presence of pre-Ediacaran animals is recorded by organic geochemical biomarkers produced by demosponges. This view of animal origins contrasts with data from the fossil record, and the taphonomic question of why animals were not preserved (if present) remains unresolved. Neoproterozoic environments demanding small, thin, body plans, and lower abundance/rarity in populations may have played a role. Considering environmental conditions, geochemical data suggest that animals evolved in a relatively low-oxygen ocean. Here, we present new analyses of sedimentary total organic carbon contents in shales suggesting that the Neoproterozoic ocean may also have had lower primary productivity—or at least lower quantities of organic carbon reaching the seafloor—compared with the Phanerozoic. Indeed, recent modeling efforts suggest that low primary productivity is an expected corollary of a low-O2 world. Combined with an inability to inhabit productive regions in a low-O2 ocean, earliest animal communities would likely have been more food limited than generally appreciated, impacting both ecosystem structure and organismal behavior. In light of this, we propose the “fire triangle” metaphor for environmental influences on early animal evolution. Moving toward consideration of all environmental aspects of the Cambrian radiation (fuel, heat, and oxidant) will ultimately lead to a more holistic view of the event. 
    more » « less
  3. Abstract

    The Ediacara biota features the rise of macroscopic complex life immediately before the Cambrian explosion. One of the most abundant and widely distributed elements of the Ediacara biota is the discoidal fossilAspidella, which is interpreted as a subsurface holdfast possibly anchoring a frondose epibenthic organism. It is a morphologically simple fossil preserved mainly in siliciclastic rocks, which are unsuitable for comprehensive stable isotope geochemical analyses to decipher its taphonomy and paleoecology. In this regard, three‐dimensionally preservedAspidellafossils from upper Ediacaran limestones of the Khatyspyt Formation in the Olenek Uplift of northern Siberia offer a rare opportunity to leverage geochemistry for insights into their taphonomy and paleoecology. To take advantage of this opportunity, we analyzed δ13Ccarb, δ18Ocarb, δ13Corg, δ34Spyr, and iron speciation of the KhatyspytAspidellafossils and surrounding sediment matrix in order to investigate whether they hosted microbial symbionts, how they were fossilized, and the redox conditions of their ecological environments.Aspidellaholdfasts and surrounding sediment matrix show indistinguishable δ13Corgvalues, suggesting they did not host and derive significant amount of nutrients from microbial symbionts such as methanogens, methylotrophs, or sulfide‐oxidizing bacteria. δ13Ccarb, δ18Ocarb, and δ34Spyrdata, along with petrographic observations, suggest that microbial sulfate reduction facilitated the preservation ofAspidellaby promoting early authigenic calcite cementation in the holdfasts before matrix cementation and sediment compaction. Iron speciation data are equivocal, largely because of the low total iron concentrations. However, consideration of published sulfur isotope and biomarker data suggests thatAspidellalikely lived in non‐euxinic waters. It is possible thatAspidellawas an opportunistic organism, colonizing the seafloor in large numbers when paleoenvironments were favorable. This study demonstrates that geochemical data of Ediacaran fossils preserved in limestones can offer important insights into the taphonomy and paleoecology of these enigmatic organisms living on the eve of the Cambrian explosion.

     
    more » « less
  4. Abstract The Tonian–Ediacaran Hecla Hoek succession of Svalbard, Norway, represents one of the most complete and well-preserved Neoproterozoic sedimentary successions worldwide. With diverse fossil assemblages, an extensive carbonate δ13C record, and sedimentary evidence for two distinct Cryogenian glaciations, this succession will continue to yield insights into the Neoproterozoic Earth system; however, at present there are no direct radiometric age constraints for these strata. We present two new Re-Os ages and initial Os isotope data that constrain the timing of Neoproterozoic glaciation in Svalbard, providing further support for two globally synchronous Cryogenian glaciations and insight into pre- and post-snowball global weathering conditions. An age from the Russøya Member (Elbobreen Formation) facilitates correlation of the negative carbon isotope excursion recorded therein with the pre-glacial “Islay” excursion of the Callison Lake Formation of northwestern Canada and the Didikama and Matheos Formations of Ethiopia. We propose that this globally synchronous ca. 735 Ma carbon isotope excursion be referred to as the Russøya excursion with northeastern Svalbard as the type locality. This new age provides an opportunity to construct a time-calibrated geological framework in Svalbard to assess connections between biogeochemical cycling, evolutionary innovations within the eukaryotes, and the most extreme climatic changes in Earth history. 
    more » « less
  5. Abstract

    Steranes preserved in sedimentary rocks serve as molecular fossils, which are thought to record the expansion of eukaryote life through the Neoproterozoic Era ( ~ 1000-541 Ma). Scientists hypothesize that ancient C27steranes originated from cholesterol, the major sterol produced by living red algae and animals. Similarly, C28and C29steranes are thought to be derived from the sterols of prehistoric fungi, green algae, and other microbial eukaryotes. However, recent work on annelid worms–an advanced group of eumetazoan animals–shows that they are also capable of producing C28and C29sterols. In this paper, we explore the evolutionary history of the24-C sterol methyltransferase(smt) gene in animals, which is required to make C28+sterols. We find evidence that thesmtgene was vertically inherited through animals, suggesting early eumetazoans were capable of C28+sterol synthesis. Our molecular clock of the animalsmtgene demonstrates that its diversification coincides with the rise of C28and C29steranes in the Neoproterozoic. This study supports the hypothesis that early eumetazoans were capable of making C28+sterols and that many animal lineages independently abandoned its biosynthesis around the end-Neoproterozoic, coinciding with the rise of abundant eukaryotic prey.

     
    more » « less