skip to main content


Title: High‐Speed Video Observations of Needles in a Positive Cloud‐to‐Ground Lightning Flash
Abstract

High‐speed video data were used to analyze the initiation and propagation of 36 needles and their associated 306 flickering events observed in a single‐stroke positive cloud‐to‐ground (+CG) flash. The needles occurred during the return‐stroke later stage and the continuing current, within approximate 10 ms after the onset of the +CG return stroke. They initiated near the lateral surface of the predominantly horizontal channel and extended almost perpendicular to that channel. Flickering events are recoil type streamers (or leaders) that retrace the channels created by needles. Flickering events can be repetitive and are classified into four categories based on different scenarios of their occurrence. Needles are caused by the radial motion of negative charge from the hot core of the positive‐leader channel into the positive corona sheath surrounding the core, when the core is rapidly recharged (its radial electric field reversed) by the return‐stroke process and during the following continuing current.

 
more » « less
Award ID(s):
2114471
NSF-PAR ID:
10363026
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
49
Issue:
2
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    High‐speed video records of a single‐stroke positive cloud‐to‐ground (+CG) flash were used to examine the evolution of eight needles developing more or less radially from the +CG channel. All these eight needles occurred during the later return‐stroke stage and the following continuing current stage. Six needles, after their initial extension from the lateral surface of the parent channel core, elongated via bidirectional recoil events, which are responsible for flickering, and two of them evolved into negative stepped leaders. For the latter two, the mean extension speed decreased from 5.3 × 106to 3.4 × 105and then to 1.3 × 105 m/s during the initial, recoil‐event, and stepping stages, respectively. The initial needle extension ranged from 70 to 320 m (N = 8), extension via recoil events from 50 to 210 m (N = 6), and extension via stepping from 810 to 1,870 m (N = 2). Compared with needles developing from leader channels, the different behavior of needle flickering, the longer length, the faster extension speed, and the higher flickering rate observed in this work may be attributed to a considerably higher current (rate of charge supply) during the return‐stroke and early continuing‐current stages of +CG flashes.

     
    more » « less
  2. Abstract

    A positive cloud‐to‐ground (+CG) lightning flash containing a single stroke with a peak current of approximately +310 kA followed by a long continuing current triggered seven upward lightning flashes from tall structures. The flashes were observed on 4 June 2016 at the Tall Object Lightning Observatory in Guangzhou, Guangdong Province, China. The optical and electric field characteristics of these flashes were analyzed using synchronized two‐station data from two high‐speed video cameras, one total‐sky lightning channel imager, two lightning channel imagers, and two sets of slow and fast electric field measuring systems. Three upward flashes were initiated sequentially in the field of view of high‐speed video cameras. One of them was initiated approximately 0.35 ms after the return stroke of +CG flash from the Canton Tower, the tallest structure within a 12‐km radius of the +CG flash, while the other two upward flashes were initiated from two other, more distant tall objects, approximately 18 ms after the +CG flash stroke. The initiation of the latter two upward flashes could be caused by the combined effect of the return stroke of +CG flash, its associated continuing current, and K process in the cloud. Each of these three upward flashes contained multiple downward leader/upward return stroke sequences, with the first leader/return stroke sequence of the second and third flashes occurring only after the completion of the last leader/return stroke sequence of the preceding flash. The total number of strokes in the three upward flashes was 13, and they occurred over approximately 1.5 s.

     
    more » « less
  3. Abstract

    High‐speed video and electric field change data were used to analyze the initiation and propagation of four predominantly vertical bidirectional leaders making connection to a predominantly horizontal channel previously formed aloft. The four bidirectional leaders sequentially developed along the same path and served to form a positive branch of the horizontal in‐cloud channel, which became a downward positive leader producing a 135‐kA positive cloud‐to‐ground (+CG) return stroke. The positive (lower) end of each bidirectional leader elongated abruptly at the time of connection of the negative (upper) end to the pre‐existing channel aloft. Thirty‐six negative streamer‐like filaments (resembling recently reported “needles”) extended sideways over ∼110 to 740 m from the pre‐existing horizontal channel at speeds of ∼0.5 to 1.9 × 107 m/s, in response to the injection of negative charge associated with the +CG.

     
    more » « less
  4. Abstract

    On February 8, 2019, the Atmosphere‐Space Interaction Monitor observed a terrestrial gamma‐ray flash (TGF) and an Elve from a positive intracloud (+IC) lightning during the initial breakdown stage of a lightning flash north east of Puerto Rico. A second Elve produced by the return stroke (RS) of a negative cloud‐to‐ground (−CG) lightning was observed 456 ms later about 300 km south of the first one. Radio measurements show that a short (30 μs) and large (280 kA km) energetic in‐cloud pulse (EIP) produced the electromagnetic (EM) wave for the first Elve while the RS of the −CG was the EM source for the second Elve. Assuming that the EIP and the RS were the sources of the 777 nm emissions, both the delay relative to the ultra‐violet pulse and the shape and duration of the 777 nm emissions can be explained by scattering and absorption inside the clouds. The TGF produced by the +IC lightning had the same duration as the EIP (∼30 μs). Due to the ±80 μs timing uncertainty of the TGF, we can only state that TGF was produced just before or most likely simultaneously with the EIP. The large 777 nm pulse indicates that a large part of the EIP was produced by a current flowing in a hot channel, but it is likely that the TGF current also contributed significantly to the EIP.

     
    more » « less
  5. Abstract

    An advanced nonlinear and nonuniform distributed circuit (RLCG) model of lightning M‐component has been developed. The model accounts for the variation of the series resistanceRof M‐component channel due to its heating by the transient current and its subsequent cooling, longitudinal voltage drop along the channel due to the background continuing current, ohmic losses in the channel corona sheath (represented by shunt conductanceG), and variation of series inductanceLand shunt capacitanceCof the channel with height above ground. The model was tested against the channel‐base current and corresponding close electric fields measured for seven M‐components in negative lightning triggered using the rocket‐and‐wire technique. Detailed sensitivity analysis was performed for one M‐component. The influences of height‐varying series inductance and shunt capacitance and the length of in‐cloud channel (representing the excitation source) on the computed current and field waveforms were found to be relatively insignificant, while the influences of ohmic losses in the channel corona sheath and voltage drop along the grounded channel were significant. The effects of background continuing current level and grounding resistance were significant for M‐field, but not for M‐current. Model‐predicted overall power and current profiles below the cloud base are consistent with the observed M‐component luminosity profiles and are drastically different from the observed downward leader/upward return stroke profiles. The characteristic feature of M‐components, the time shift between the current onset and close electric field peak (essentially absent for leader/return stroke sequences), was well reproduced by our model.

     
    more » « less