skip to main content


Title: A MODWT-Based Algorithm for the Identification and Removal of Jumps/Short-Term Distortions in Displacement Measurements Used for Structural Health Monitoring
Researchers have made substantial efforts to improve the measurement of structural reciprocal motion using radars in the last years. However, the signal-to-noise ratio of the radar’s received signal still plays an important role for long-term monitoring of structures that are susceptible to excessive vibration. Although the prolonged monitoring of structural deflections may provide paramount information for the assessment of structural condition, most of the existing structural health monitoring (SHM) works did not consider the challenges to handle long-term displacement measurements when the signal-to-noise ratio of the measurement is low. This may cause discontinuities in the detected reciprocal motion and can result in wrong assessments during the data analyses. This paper introduces a novel approach that uses a wavelet-based multi-resolution analysis to correct short-term distortions in the calculated displacements even when previously proposed denoising techniques are not effective. Experimental results are presented to validate and demonstrate the feasibility of the proposed algorithm. The advantages and limitations of the proposed approach are also discussed.  more » « less
Award ID(s):
1808613
NSF-PAR ID:
10327049
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IoT
Volume:
3
Issue:
1
ISSN:
2624-831X
Page Range / eLocation ID:
60 to 72
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Humpback whale behavior, population distribution and structure can be inferred from long term underwater passive acoustic monitoring of their vocalizations. Here we develop automatic approaches for classifying humpback whale vocalizations into the two categories of song and non-song, employing machine learning techniques. The vocalization behavior of humpback whales was monitored over instantaneous vast areas of the Gulf of Maine using a large aperture coherent hydrophone array system via the passive ocean acoustic waveguide remote sensing technique over multiple diel cycles in Fall 2006. We use wavelet signal denoising and coherent array processing to enhance the signal-to-noise ratio. To build features vector for every time sequence of the beamformed signals, we employ Bag of Words approach to time-frequency features. Finally, we apply Support Vector Machine (SVM), Neural Networks, and Naive Bayes to classify the acoustic data and compare their performances. Best results are obtained using Mel Frequency Cepstrum Coefficient (MFCC) features and SVM which leads to 94% accuracy and 72.73% F1-score for humpback whale song versus non-song vocalization classification, showing effectiveness of the proposed approach for real-time classification at sea. 
    more » « less
  2. Objective: We designed and validated a wireless, low-cost, easy-to-use, mobile, dry-electrode headset for scalp electroencephalography (EEG) recordings for closed-loop brain–computer (BCI) interface and internet-of-things (IoT) applications. Approach: The EEG-based BCI headset was designed from commercial off-the-shelf (COTS) components using a multi-pronged approach that balanced interoperability, cost, portability, usability, form factor, reliability, and closed-loop operation. Main Results: The adjustable headset was designed to accommodate 90% of the population. A patent-pending self-positioning dry electrode bracket allowed for vertical self-positioning while parting the user’s hair to ensure contact of the electrode with the scalp. In the current prototype, five EEG electrodes were incorporated in the electrode bracket spanning the sensorimotor cortices bilaterally, and three skin sensors were included to measure eye movement and blinks. An inertial measurement unit (IMU) provides monitoring of head movements. The EEG amplifier operates with 24-bit resolution up to 500 Hz sampling frequency and can communicate with other devices using 802.11 b/g/n WiFi. It has high signal–to–noise ratio (SNR) and common–mode rejection ratio (CMRR) (121 dB and 110 dB, respectively) and low input noise. In closed-loop BCI mode, the system can operate at 40 Hz, including real-time adaptive noise cancellation and 512 MB of processor memory. It supports LabVIEW as a backend coding language and JavaScript (JS), Cascading Style Sheets (CSS), and HyperText Markup Language (HTML) as front-end coding languages and includes training and optimization of support vector machine (SVM) neural classifiers. Extensive bench testing supports the technical specifications and human-subject pilot testing of a closed-loop BCI application to support upper-limb rehabilitation and provides proof-of-concept validation for the device’s use at both the clinic and at home. Significance: The usability, interoperability, portability, reliability, and programmability of the proposed wireless closed-loop BCI system provides a low-cost solution for BCI and neurorehabilitation research and IoT applications. 
    more » « less
  3. null (Ed.)
    This paper presents a motion-sensing device with the capability of harvesting energy from low-frequency motion activities that can be utilized for long-term human health monitoring. The energy harvester used in the proposed motion sensor is based on the mechanical modulation of liquid on an insulated electrode, which utilizes a technique referred to as reverse electrowetting-on-dielectric (REWOD). The generated AC signal from the REWOD is rectified to a DC voltage using a Schottky diode-based rectifier and boosted subsequently with the help of a linear charge-pump circuit and a low-dropout regulator (LDO). The constant DC voltage from the LDO (1.8 V) powers the motion-sensing read-out circuitry, which converts the generated charge into a proportional output voltage using a charge amplifier. After amplification of the motion data, a 5-bit SAR-ADC (successive-approximation register ADC) digitizes the signal to be transmitted to a remote receiver. Both the CMOS energy harvester circuit including the rectifier, the charge-pump circuit, the LDO, and the read-out circuit including the charge amplifier, and the ADC is designed in the standard 180 nm CMOS technology. The amplified amplitude goes up to 1.76 V at 10 Hz motion frequency, following linearity with respect to the frequency. The generated DC voltage from the REWOD after the rectifier and the charge-pump is found to be 2.4 V, having the voltage conversion ratio (VCR) as 32.65% at 10 Hz of motion frequency. The power conversion efficiency (PCE) of the rectifier is simulated as high as 68.57% at 10 Hz. The LDO provides the power supply voltage of 1.8 V to the read-out circuit. The energy harvester demonstrates a linear relationship between the frequency of motion and the generated output power, making it suitable as a self-powered wearable motion sensor. 
    more » « less
  4. Abstract

    High-resolution airborne cloud Doppler radars such as the W-band Wyoming Cloud Radar (WCR) have, since the 1990s, investigated cloud microphysical, kinematic, and precipitation structures down to 30-m resolution. These measurements revolutionized our understanding of fine-scale cloud structure and the scales at which cloud processes occur. Airborne cloud Doppler radars may also resolve cloud turbulent eddy structure directly at 10-m scales. To date, cloud turbulence has been examined as variances and dissipation rates at coarser resolution than individual pulse volumes. The present work advances the potential of near-vertical pulse-pair Doppler spectrum width as a metric for turbulent air motion. Doppler spectrum width has long been used to investigate turbulent motions from ground-based remote sensors. However, complexities of airborne Doppler radar and spectral broadening resulting from platform and hydrometeor motions have limited airborne radar spectrum width measurements to qualitative interpretation only. Here we present the first quantitative validation of spectrum width from an airborne cloud radar. Echoes with signal-to-noise ratio greater than 10 dB yield spectrum width values that strongly correlate with retrieved mean Doppler variance for a range of nonconvective cloud conditions. Further, Doppler spectrum width within turbulent regions of cloud also shows good agreement with in situ eddy dissipation rate (EDR) and gust probe variance. However, the use of pulse-pair estimated spectrum width as a metric for turbulent air motion intensity is only suitable for turbulent air motions more energetic than the magnitude of spectral broadening, estimated to be <0.4 m s−1for the WCR in these cases.

    Significance Statement

    Doppler spectrum width is a widely available airborne radar measurement previously considered too uncertain to attribute to atmospheric turbulence. We validate, for the first time, the response of spectrum width to turbulence at and away from research aircraft flight level and demonstrate that under certain conditions, spectrum width can be used to diagnose atmospheric turbulence down to scales of tens of meters. These high-resolution turbulent air motion intensity measurements may better connect to cloud hydrometeor process and growth response seen in coincident radar reflectivity structures proximate to turbulent eddies.

     
    more » « less
  5. The use of video-imaging data for in-line process monitoring applications has become popular in industry. In this framework, spatio-temporal statistical process monitoring methods are needed to capture the relevant information content and signal possible out-of-control states. Video-imaging data are characterized by a spatio-temporal variability structure that depends on the underlying phenomenon, and typical out-of-control patterns are related to events that are localized both in time and space. In this article, we propose an integrated spatio-temporal decomposition and regression approach for anomaly detection in video-imaging data. Out-of-control events are typically sparse, spatially clustered and temporally consistent. The goal is not only to detect the anomaly as quickly as possible (“when”) but also to locate it in space (“where”). The proposed approach works by decomposing the original spatio-temporal data into random natural events, sparse spatially clustered and temporally consistent anomalous events, and random noise. Recursive estimation procedures for spatio-temporal regression are presented to enable the real-time implementation of the proposed methodology. Finally, a likelihood ratio test procedure is proposed to detect when and where the anomaly happens. The proposed approach was applied to the analysis of high-sped video-imaging data to detect and locate local hot-spots during a metal additive manufacturing process. 
    more » « less