- Award ID(s):
- 1902075
- NSF-PAR ID:
- 10327242
- Date Published:
- Journal Name:
- 2021 ASEE Virtual Annual Conference Content Access
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Engineering is a creative profession where diverse perspectives of both men and women are crucial to the field. The importance of better understanding the pipeline of female students into engineering, and the path to their success in the major is evident. In 2017, women comprised approximately 20% of engineering graduates, up from 18% in 1997, and 15% never entered the engineering workforce. In 2019, women comprised 48% of the workforce, 34% of the STEM workforce, and only 16% of practicing engineers, a 3% increase from 2009. In an effort to better understand these disparities, this mixed methods research investigated the creative self-efficacy (CSE) of women engineering majors and their beliefs about creativity in relation to lived experiences and explores the research question: In what ways do undergraduate women engineering students describe their creativity and how their lived experiences influenced their decision to major in engineering? The researchers investigated the lived experiences of women engineering students before they entered the engineering major in relation to the way they described themselves as creative. A survey of CSE and beliefs about creativity was administered to 121 undergraduate women engineering students who volunteered for this study. Interviews were conducted of 15 participants selected from survey results with different levels of CSE who met the researcher’s criteria for success in the engineering major. The findings of this study lead to several conclusions: (1) students’ descriptions of themselves as creative corresponded more with the arts than to innovation in engineering; (2) students who described themselves as less creative: (a) had a lower level of CSE; (b) had a greater exposure to engineering in high school through engineering-centered courses and clubs; (c) had a family member who worked in the profession; (d) described more negative classroom experiences at all educational levels that involved intimidation, isolation, and gender-bias.more » « less
-
Creativity is typically defined as the generation of novel and useful ideas or artifacts. This generative capacity is crucial to everyday problem solving, technological innovation, scientific discovery, and the arts. A central concern of cognitive scientists is to understand the processes that underlie human creative thinking. We review evidence that one process contributing to human creativity is the ability to generate novel representations of unfamiliar situations by completing a partially-specified relation or an analogy. In particular, cognitive tasks that trigger generation of relational similarities between dissimilar situations—distant analogies—foster a kind of creative mindset. We discuss possible computational mechanisms that might enable relation-driven generation, and hence may contribute to human creativity, and conclude with suggested directions for future research.more » « less
-
Creativity plays an important role in engineering problem solving, particularly when solving an ill-structured problem, and has been a topic of increasing research interest in recent years. Prior research on creativity has been conducted in problem solving settings, predominantly focusing on undergraduate engineering students, including how faculty can foster creativity in engineering students, how engineering faculty perceive their students’ creativity, and how to measure it. However, more work is needed to examine engineering faculty and practitioner perspectives on the role of creativity when they solve an engineering problem themselves. Since engineering students learn problem solving, at least initially, mainly from their professors, it is essential to understand how faculty perceive their own creativity in problem solving. Similarly, given that practitioners solve ill-structured engineering problems on a regular basis in the workplace and that most of the students go on to work in the engineering industry when they graduate and ultimately become practitioners, it is also important to explore practitioner perspectives on creativity in problem solving settings. As part of an ongoing NSF-funded study, this paper investigates how engineering faculty’s and practitioners’ creativity influences their problem solving processes, how their perspectives on creativity in a problem solving environment differ, and what factors impact their creativity. Five tenure-track faculty in civil engineering and five practitioners were interviewed after they solved an ill-structured engineering problem. Participants’ responses were transcribed and coded using initial coding. This paper discusses their responses to semi-structured interview questions. The findings suggest that faculty and practitioners feel more creative when they are familiar with the subject area of a problem. If they are aware of a particular solution that has been developed and used before or have access to resources to look them up, they may not necessarily embrace creativity. The findings indicated differences not only across faculty and practitioners but also within the faculty and practitioner participants. Similarities and differences between faculty and practitioners in creative problem solving and the themes emerged are discussed and recommendations for educators are provided.more » « less
-
The purpose of product dissection is to teach students how a product works and provide them with inspiration for new ideas. However, little is known about how variations in dissection activities impact creative outcomes or engineering self-efficacy (ESE) and creative self-efficacies (CSE). This is important since the goal of engineering education is to produce capable and creative engineers. The current study was, thus, developed to address this research gap through a factorial experiment. The results showed that idea development was not impacted by dissection conditions but that ESE and CSE were increased through these activities. The results also showed that higher levels of CSE and ESE had alternate effects on novel idea development indicating they are at odds in engineering education.more » « less
-
Abstract Growth mindset interventions directed at students aim to change students' beliefs about the malleability of ability. These interventions have had mixed results, with some showing impressive findings (e.g., improving grades and persistence in science and closing performance gaps), while other implementations have shown null findings. This heterogeneity suggests that growth mindset interventions should not be viewed as a sole solution for improving educational outcomes for students and that further research is needed to identify the contextual factors that influence their effectiveness. We propose new theoretical directions in mindset research that adopts an anti‐deficit model and moves away from focusing exclusively on students and their belief systems. Instead, we encourage a new wave of mindset research that considers the institutional, cultural, and contextual environment that either corroborates or negates students' mindset beliefs. We propose a new approach to mindset research that emphasizes innovative approaches to better understand the conditions under which mindset interventions are effective.