skip to main content


Title: BEAR: Sketching BFGS Algorithm for Ultra-High Dimensional Feature Selection in Sublinear Memory
We consider feature selection for applications in machine learning where the dimensionality of the data is so large that it exceeds the working memory of the (local) computing machine. Unfortunately, current large-scale sketching algorithms show poor memory-accuracy trade-off in selecting features in high dimensions due to the irreversible collision and accumulation of the stochastic gradient noise in the sketched domain. Here, we develop a second-order feature selection algorithm, called BEAR, which avoids the extra collisions by efficiently storing the second-order stochastic gradients of the celebrated Broyden-Fletcher-Goldfarb-Shannon (BFGS) algorithm in Count Sketch, using a memory cost that grows sublinearly with the size of the feature vector. BEAR reveals an unexplored advantage of second-order optimization for memory-constrained high-dimensional gradient sketching. Our extensive experiments on several real-world data sets from genomics to language processing demonstrate that BEAR requires up to three orders of magnitude less memory space to achieve the same classification accuracy compared to the first-order sketching algorithms with a comparable run time. Our theoretical analysis further proves the global convergence of BEAR with O(1/𝑑) rate in 𝑑 iterations of the sketched algorithm.  more » « less
Award ID(s):
1703678
NSF-PAR ID:
10327336
Author(s) / Creator(s):
Date Published:
Journal Name:
Proceedings of Machine Learning Research vol 107:75–92
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We introduce a new sub-linear space sketch the "Weight-Median Sketch" for learning compressed linear classifiers over data streams while supporting the efficient recovery of large-magnitude weights in the model. This enables memory-limited execution of several statistical analyses over streams, including online feature selection, streaming data explanation, relative deltoid detection, and streaming estimation of pointwise mutual information. Unlike related sketches that capture the most frequently-occurring features (or items) in a data stream, the Weight-Median Sketch captures the features that are most discriminative of one stream (or class) compared to another. The Weight-Median Sketch adopts the core data structure used in the Count-Sketch, but, instead of sketching counts, it captures sketched gradient updates to the model parameters. We provide a theoretical analysis that establishes recovery guarantees for batch and online learning, and demonstrate empirical improvements in memory-accuracy trade-offs over alternative memory-budgeted methods, including count-based sketches and feature hashing. 
    more » « less
  2. Abstract

    We consider variants of a recently developed Newton-CG algorithm for nonconvex problems (Royer, C. W. & Wright, S. J. (2018) Complexity analysis of second-order line-search algorithms for smooth nonconvex optimization. SIAM J. Optim., 28, 1448–1477) in which inexact estimates of the gradient and the Hessian information are used for various steps. Under certain conditions on the inexactness measures, we derive iteration complexity bounds for achieving $\epsilon $-approximate second-order optimality that match best-known lower bounds. Our inexactness condition on the gradient is adaptive, allowing for crude accuracy in regions with large gradients. We describe two variants of our approach, one in which the step size along the computed search direction is chosen adaptively, and another in which the step size is pre-defined. To obtain second-order optimality, our algorithms will make use of a negative curvature direction on some steps. These directions can be obtained, with high probability, using the randomized Lanczos algorithm. In this sense, all of our results hold with high probability over the run of the algorithm. We evaluate the performance of our proposed algorithms empirically on several machine learning models. Our approach is a first attempt to introduce inexact Hessian and/or gradient information into the Newton-CG algorithm of Royer & Wright (2018, Complexity analysis of second-order line-search algorithms for smooth nonconvex optimization. SIAM J. Optim., 28, 1448–1477).

     
    more » « less
  3. Banerjee, Arindam ; Fukumizu, Kenji (Ed.)
    We consider the contextual bandit problem, where a player sequentially makes decisions based on past observations to maximize the cumulative reward. Although many algorithms have been proposed for contextual bandit, most of them rely on finding the maximum likelihood estimator at each iteration, which requires 𝑂(𝑑) time at the 𝑑-th iteration and are memory inefficient. A natural way to resolve this problem is to apply online stochastic gradient descent (SGD) so that the per-step time and memory complexity can be reduced to constant with respect to 𝑑, but a contextual bandit policy based on online SGD updates that balances exploration and exploitation has remained elusive. In this work, we show that online SGD can be applied to the generalized linear bandit problem. The proposed SGD-TS algorithm, which uses a single-step SGD update to exploit past information and uses Thompson Sampling for exploration, achieves 𝑂̃ (π‘‡β€Ύβ€Ύβˆš) regret with the total time complexity that scales linearly in 𝑇 and 𝑑, where 𝑇 is the total number of rounds and 𝑑 is the number of features. Experimental results show that SGD-TS consistently outperforms existing algorithms on both synthetic and real datasets. 
    more » « less
  4. Abstract

    We propose a very fast approximate Markov chain Monte Carlo sampling framework that is applicable to a large class of sparse Bayesian inference problems. The computational cost per iteration in several regression models is of order O(n(s+J)), where n is the sample size, s is the underlying sparsity of the model, and J is the size of a randomly selected subset of regressors. This cost can be further reduced by data sub-sampling when stochastic gradient Langevin dynamics are employed. The algorithm is an extension of the asynchronous Gibbs sampler of Johnson et al. [(2013). Analyzing Hogwild parallel Gaussian Gibbs sampling. In Proceedings of the 26th International Conference on Neural Information Processing Systems (NIPS’13) (Vol. 2, pp. 2715–2723)], but can be viewed from a statistical perspective as a form of Bayesian iterated sure independent screening [Fan, J., Samworth, R., & Wu, Y. (2009). Ultrahigh dimensional feature selection: Beyond the linear model. Journal of Machine Learning Research, 10, 2013–2038]. We show that in high-dimensional linear regression problems, the Markov chain generated by the proposed algorithm admits an invariant distribution that recovers correctly the main signal with high probability under some statistical assumptions. Furthermore, we show that its mixing time is at most linear in the number of regressors. We illustrate the algorithm with several models.

     
    more » « less
  5. We propose an inexact variable-metric proximal point algorithm to accelerate gradient-based optimization algorithms. The proposed scheme, called QNing can be notably applied to incremental first-order methods such as the stochastic variance-reduced gradient descent algorithm (SVRG) and other randomized incremental optimization algorithms. QNing is also compatible with composite objectives, meaning that it has the ability to provide exactly sparse solutions when the objective involves a sparsity-inducing regularization. When combined with limited-memory BFGS rules, QNing is particularly effective to solve high-dimensional optimization problems, while enjoying a worst-case linear convergence rate for strongly convex problems. We present experimental results where QNing gives significant improvements over competing methods for training machine learning methods on large samples and in high dimensions. 
    more » « less