skip to main content


Title: Sample Complexity of Robust Reinforcement Learning with a Generative Model
The Robust Markov Decision Process (RMDP) framework focuses on designing control policies that are robust against the parameter uncertainties due to the mis- matches between the simulator model and real-world settings. An RMDP problem is typically formulated as a max-min problem, where the objective is to find the policy that maximizes the value function for the worst possible model that lies in an uncertainty set around a nominal model. The standard robust dynamic programming approach requires the knowledge of the nominal model for computing the optimal robust policy. In this work, we propose a model-based reinforcement learning (RL) algorithm for learning an ε-optimal robust policy when the nominal model is unknown. We consider three different forms of uncertainty sets, characterized by the total variation distance, chi-square divergence, and KL divergence. For each of these uncertainty sets, we give a precise characterization of the sample complexity of our proposed algorithm. In addition to the sample complexity results, we also present a formal analytical argument on the benefit of using robust policies. Finally, we demonstrate the performance of our algorithm on two benchmark problems.  more » « less
Award ID(s):
2045783 1850206
NSF-PAR ID:
10327542
Author(s) / Creator(s):
;
Date Published:
Journal Name:
International Conference on Artificial Intelligence and Statistics (AISTATS)
Page Range / eLocation ID:
9582--9602
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We study the problem of learning personalized decision policies from observational data while accounting for possible unobserved confounding in the data-generating process. Unlike previous approaches that assume unconfoundedness, i.e., no unobserved confounders affected both treatment assignment and outcomes, we calibrate policy learning for realistic violations of this unverifiable assumption with uncertainty sets motivated by sensitivity analysis in causal inference. Our framework for confounding-robust policy improvement optimizes the minimax regret of a candidate policy against a baseline or reference "status quo" policy, over an uncertainty set around nominal propensity weights. We prove that if the uncertainty set is well-specified, robust policy learning can do no worse than the baseline, and only improve if the data supports it. We characterize the adversarial subproblem and use efficient algorithmic solutions to optimize over parametrized spaces of decision policies such as logistic treatment assignment. We assess our methods on synthetic data and a large clinical trial, demonstrating that confounded selection can hinder policy learning and lead to unwarranted harm, while our robust approach guarantees safety and focuses on well-evidenced improvement. 
    more » « less
  2. This paper addresses the end-to-end sample complexity bound for learning the H2 optimal controller (the Linear Quadratic Gaussian (LQG) problem) with unknown dynamics, for potentially unstable Linear Time Invariant (LTI) systems. The robust LQG synthesis procedure is performed by considering bounded additive model uncertainty on the coprime factors of the plant. The closed-loopi dentification of the nominal model of the true plant is performed by constructing a Hankel-like matrix from a single time-series of noisy finite length input-output data, using the ordinary least squares algorithm from Sarkar and Rakhlin (2019). Next, an H∞ bound on the estimated model error is provided and the robust controller is designed via convex optimization, much in the spirit of Mania et al. (2019) and Zheng et al. (2020b), while allowing for bounded additive uncertainty on the coprime factors of the model. Our conclusions are consistent with previous results on learning the LQG and LQR controllers. 
    more » « less
  3. We study a model-free federated linear quadratic regulator (LQR) problem where M agents with unknown, distinct yet similar dynamics collaboratively learn an optimal policy to minimize an average quadratic cost while keeping their data private. To exploit the similarity of the agents' dynamics, we propose to use federated learning (FL) to allow the agents to periodically communicate with a central server to train policies by leveraging a larger dataset from all the agents. With this setup, we seek to understand the following questions: (i) Is the learned common policy stabilizing for all agents? (ii) How close is the learned common policy to each agent's own optimal policy? (iii) Can each agent learn its own optimal policy faster by leveraging data from all agents? To answer these questions, we propose a federated and model-free algorithm named FedLQR. Our analysis overcomes numerous technical challenges, such as heterogeneity in the agents' dynamics, multiple local updates, and stability concerns. We show that FedLQR produces a common policy that, at each iteration, is stabilizing for all agents. We provide bounds on the distance between the common policy and each agent's local optimal policy. Furthermore, we prove that when learning each agent's optimal policy, FedLQR achieves a sample complexity reduction proportional to the number of agents M in a low-heterogeneity regime, compared to the single-agent setting. 
    more » « less
  4. null (Ed.)
    Learning to plan for long horizons is a central challenge in episodic reinforcement learning problems. A fundamental question is to understand how the difficulty of the problem scales as the horizon increases. Here the natural measure of sample complexity is a normalized one: we are interested in the \emph{number of episodes} it takes to provably discover a policy whose value is eps near to that of the optimal value, where the value is measured by the \emph{normalized} cumulative reward in each episode. In a COLT 2018 open problem, Jiang and Agarwal conjectured that, for tabular, episodic reinforcement learning problems, there exists a sample complexity lower bound which exhibits a polynomial dependence on the horizon --- a conjecture which is consistent with all known sample complexity upper bounds. This work refutes this conjecture, proving that tabular, episodic reinforcement learning is possible with a sample complexity that scales only \emph{logarithmically} with the planning horizon. In other words, when the values are appropriately normalized (to lie in the unit interval), this results shows that long horizon RL is no more difficult than short horizon RL, at least in a minimax sense. Our analysis introduces two ideas: (i) the construction of an eps-net for near-optimal policies whose log-covering number scales only logarithmically with the planning horizon, and (ii) the Online Trajectory Synthesis algorithm, which adaptively evaluates all policies in a given policy class and enjoys a sample complexity that scales logarithmically with the cardinality of the given policy class. Both may be of independent interest. 
    more » « less
  5. Off-policy evaluation and learning (OPE/L) use offline observational data to make better decisions, which is crucial in applications where online experimentation is limited. However, depending entirely on logged data, OPE/L is sensitive to environment distribution shifts — discrepancies between the data-generating environment and that where policies are deployed. Si et al., (2020) proposed distributionally robust OPE/L (DROPE/L) to address this, but the proposal relies on inverse-propensity weighting, whose estimation error and regret will deteriorate if propensities are nonparametrically estimated and whose variance is suboptimal even if not. For standard, non-robust, OPE/L, this is solved by doubly robust (DR) methods, but they do not naturally extend to the more complex DROPE/L, which involves a worst-case expectation. In this paper, we propose the first DR algorithms for DROPE/L with KL-divergence uncertainty sets. For evaluation, we propose Localized Doubly Robust DROPE (LDR2 OPE) and show that it achieves semiparametric efficiency under weak product rates conditions. Thanks to a localization technique, LDR2 OPE only requires fitting a small number of regressions, just like DR methods for standard OPE. For learning, we propose Continuum Doubly Robust DROPL (CDR2 OPL) and show that, under a product rate condition involving a continuum of regressions, it enjoys a fast regret rate of 𝑂(𝑁−1/2) even when unknown propensities are nonparametrically estimated. We empirically validate our algorithms in simulations and further extend our results to general 𝑓 -divergence uncertainty sets. 
    more » « less