skip to main content


Title: Hurricanes increase tropical forest vulnerability to drought
Summary

Rapid changes in climate and disturbance regimes, including droughts and hurricanes, are likely to influence tropical forests, but our understanding of the compound effects of disturbances on forest ecosystems is extremely limited. Filling this knowledge gap is necessary to elucidate the future of these ecosystems under a changing climate.

We examined the relationship between hurricane response (damage, mortality, and resilience) and four hydraulic traits of 13 dominant woody species in a wet tropical forest subject to periodic hurricanes.

Species with high resistance to embolisms (lowP50values) and higher safety margins () were more resistant to immediate hurricane mortality and breakage, whereas species with higher hurricane resilience (rapid post‐hurricane growth) had high capacitance andP50values and low . During 26 yr of post‐hurricane recovery, we found a decrease in community‐weighted mean values for traits associated with greater drought resistance (leaf turgor loss point,P50, ) and an increase in capacitance, which has been linked with lower drought resistance.

Hurricane damage favors slow‐growing, drought‐tolerant species, whereas post‐hurricane high resource conditions favor acquisitive, fast‐growing but drought‐vulnerable species, increasing forest productivity at the expense of drought tolerance and leading to higher overall forest vulnerability to drought.

 
more » « less
Award ID(s):
1753810 1831952
NSF-PAR ID:
10445033
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
New Phytologist
Volume:
235
Issue:
3
ISSN:
0028-646X
Page Range / eLocation ID:
p. 1005-1017
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Severe droughts have led to lower plant growth and high mortality in many ecosystems worldwide, including tropical forests. Drought vulnerability differs among species, but there is limited consensus on the nature and degree of this variation in tropical forest communities. Understanding species‐level vulnerability to drought requires examination of hydraulic traits since these reflect the different strategies species employ for surviving drought.

    Here, we examined hydraulic traits and growth reductions during a severe drought for 12 common woody species in a wet tropical forest community in Puerto Rico to ask: Q1. To what extent can hydraulic traits predict growth declines during drought? We expected that species with more hydraulically vulnerable xylem and narrower safety margins (SMP50) would grow less during drought. Q2. How does species successional association relate to the levels of vulnerability to drought and hydraulic strategies? We predicted that early‐ and mid‐successional species would exhibit more acquisitive strategies, making them more susceptible to drought than shade‐tolerant species. Q3. What are the different hydraulic strategies employed by species and are there trade‐offs between drought avoidance and drought tolerance? We anticipated that species with greater water storage capacity would have leaves that lose turgor at higher xylem water potential and be less resistant to embolism forming in their xylem (P50).

    We found a large range of variation in hydraulic traits across species; however, they did not closely capture the magnitude of growth declines during drought. Among larger trees (≥10 cm diameter at breast height—DBH), some tree species with high xylem embolism vulnerability (P50) and risk of hydraulic failure (SMP50) experienced substantial growth declines during drought, but this pattern was not consistent across species. We found a trade‐off among species between drought avoidance (capacitance) and drought tolerating (P50) in this tropical forest community. Hydraulic strategies did not align with successional associations. Instead, some of the more drought‐vulnerable species were shade‐tolerant dominants in the community, suggesting that a drying climate could lead to shifts in long‐term forest composition and function in Puerto Rico and the Caribbean.

    Read the freePlain Language Summaryfor this article on the Journal blog.

     
    more » « less
  2. Abstract

    Trait variation across individuals and species influences the resistance and resilience of ecosystems to disturbance, and the ability of individuals to capitalize on postdisturbance conditions. In trees, the anatomical structure of xylem directly affects plant function and, consequently, it is a valuable lens through which to understand resistance and resilience to disturbance.

    To determine how hurricanes affect wood anatomy of tropical trees, we characterized a set of anatomical traits in wood produced before and after a major hurricane for 65 individuals of 10 Puerto Rican tree species. We quantified variation at different scales (among and within species, and within individuals) and determined trait shifts between the pre‐ and posthurricane periods. We also assessed correlations between traits and growth rates.

    While the majority of anatomical trait variation occurred among species, we also observed substantial variation within species and individuals. Within individuals, we found significant shifts for some traits that generally reflected increased hydraulic conductivity in the posthurricane period. We found weak evidence for an association between individual xylem anatomical traits and diameter growth rates.

    Ultimately, within‐individual variation of xylem anatomical traits observed in our study could be related to posthurricane recovery and overall growth (e.g. canopy filling). Other factors, however, likely decouple a relationship between xylem anatomy and diameter growth. While adjustments of wood anatomy may enable individual trees to capitalize on favourable postdisturbance conditions, these may also influence their future responses or vulnerability to subsequent disturbances.

    Read the freePlain Language Summaryfor this article on the Journal blog.

     
    more » « less
  3. Summary

    Xylem anatomy and function have large implications for plant growth as well as survival during drought, but the impact of nutrient limitation on xylem is not fully understood. This study examines the pygmy forest in California, a plant community that experiences negligible water stress but is severely stunted by low‐nutrient and acidic soil, to investigate how nutrient limitation affects xylem function.

    Thirteen key anatomical and hydraulic traits of stems of four species were compared between pygmy forest plants and nearby conspecifics growing on richer soil.

    Resistance to cavitation (P50), a critical trait for predicting survival during drought, had highly species‐specific responses: in one species, pygmy plants had a 26% decrease in cavitation resistance compared to higher‐nutrient conspecifics, while in another species, pygmy plants had a 56% increase in cavitation resistance. Other traits responded to nutrient limitation more consistently: pygmy plants had smaller xylem conduits and higher leaf‐specific conductivity (KL) than conspecific controls.

    Edaphic stress, even in the absence of water stress, altered xylem structure and thus had substantial impacts on water transport. Importantly, nutrient limitation shifted cavitation resistance in a species‐specific and unpredictable manner; this finding has implications for the assessment of cavitation resistance in other natural systems.

     
    more » « less
  4. Abstract

    Disentangling species strategies that confer resilience to natural disturbances is key to conserving and restoring savanna ecosystems. Fire is a recurrent disturbance in savannas, and savanna vegetation is highly adapted to and often dependent on fire. However, although the woody component of tropical savannas is well studied, we still do not understand how ground‐layer plant communities respond to fire, limiting conservation and management actions.

    We investigated the effects of prescribed fire on community structure and composition, and evaluated which traits are involved in plant community regeneration after fire in the cerrado ground layer. We assessed traits related to species persistence and colonization capacity after fire, including resprouter type, underground structure, fire‐induced flowering, regeneration strategy and growth form. We searched for functional groups related to response to fire, to shed light on the main strategies of post‐fire recovery among species in the ground layer.

    Fire changed ground‐layer community structure and composition in the short term, leading to greater plant species richness, population densities and increasing bare soil, compared with unburned communities. Eight months after fire, species abundance did not differ from pre‐disturbance values for 86% of the species, demonstrating the resilience of this layer to fire. Only one ruderal species was disadvantaged by fire and 13% of the species benefited. Rapid recovery of soil cover by native vegetation in burned areas was driven by species with high capacity to resprout and spread vegetatively. Recovery of the savanna ground‐layer community, as a whole, resulted from a combination of different species traits. We summarized these traits into five large groups, encompassing key strategies involved in ground‐layer regeneration after fire.

    Synthesis. Fire dramatically changes the ground layer of savanna vegetation in the short term, but the system is highly resilient, quickly recovering the pre‐fire state. Recovery involves different strategies, which we categorized into five functional groups of plant species:grasses,seeders,bloomers,undergroundersandresprouters. Knowledge of these diverse strategies should be used as a tool to assess conservation and restoration status of fire‐resilient ecosystems in the cerrado.

     
    more » « less
  5. Abstract

    Photosynthetic traits suggest that shade tolerance may explain the contrasting success of two conifer taxa, Podocarpaceae and Pinaceae, in tropical forests. Needle‐leaved species fromPinus(Pinaceae) are generally absent from tropical forests, whereasPinus krempfii, a flat‐leaved pine, and numerous flat‐leaved Podocarpaceae are abundant. Respiration (R) traits may provide additional insight into the drivers of the contrasting success of needle‐ and flat‐leaved conifers in tropical forests.

    We measured the short‐term respiratory temperature (RT) response between 10 and 50°C and foliar morphological traits of three needle‐ and seven flat‐leaved conifer species coexisting in a tropical montane forest in the Central Highlands of Vietnam containing notable conifer diversity. We fit a lognormal polynomial model to each RT curve and extracted the following three parameters:a(basalR), andbandc(together describing the shape of the response).

    Needle‐leaved species (Pinus kesiya,Pinus dalatensisandDacrydium elatum) had higher rates of area‐basedRat 25°C (R25‐area) as well as higher area‐based modelled basal respiration (a) than flat‐leaved species (P. krempfii,Podocarpus neriifolius,Dacrycarpus imbricatus,Nageia nana,Taxus wallichiana,Keteeleria evelynianaandFokienia hodginsii). No significant differences were found between needle‐ and flat‐leaved species in mass‐basedR25(R25‐mass) or in the shape of the RT response (bandc); however, interspecific differences inR25‐mass,Rat nighttime temperature extremes (R4.1andR20.6) and leaf traits were apparent.

    Differences inR25‐areaandasuggest that needle‐leaved foliage may be more energetically costly to maintain than flat‐leaved foliage, providing new insight and additional support for the hypothesis that shade tolerance is an important driver of Podocarpaceae success and Pinaceae absence in the majority of tropical forests.

    Interspecific differences inR25‐massand leaf traits highlight that varying ecological strategies are employed by conifers to coexist and survive in the Central Highlands of Vietnam. Ultimately, these data further our understanding of current conifer biogeographical distributions and underscore the need for additional studies to elucidate the effects of extreme temperature events on the continued survival of conifers in this unique forest.

    A freePlain Language Summarycan be found within the Supporting Information of this article.

     
    more » « less