skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Engineering encapsulated ionic liquids for next-generation applications
Ionic liquids (ILs) have attracted considerable attention in several sectors (from energy storage to catalysis, from drug delivery to separation media) owing to their attractive properties, such as high thermal stability, wide electrochemical window, and high ionic conductivity. However, their high viscosity and surface tension compared to conventional organic solvents can lead to unfavorable transport properties. To circumvent undesired kinetics effects limiting mass transfer, the discretization of ILs into small droplets has been proposed as a method to increase the effective surface area and the rates of mass transfer. In the present review paper, we summarize the different methods developed so far for encapsulating ILs in organic or inorganic shells and highlight characteristic features of each approach, while outlining potential applications. The remarkable tunability of ILs, which derives from the high number of anions and cations currently available as well as their permutations, combines with the possibility of tailoring the composition, size, dispersity, and properties ( e.g. , mechanical, transport) of the shell to provide a toolbox for rationally designing encapsulated ILs for next-generation applications, including carbon capture, energy storage devices, waste handling, and microreactors. We conclude this review with an outlook on potential applications that could benefit from the possibility of encapsulating ILs in organic and inorganic shells.  more » « less
Award ID(s):
2042304
PAR ID:
10327671
Author(s) / Creator(s):
;
Date Published:
Journal Name:
RSC Advances
Volume:
11
Issue:
57
ISSN:
2046-2069
Page Range / eLocation ID:
36273 to 36288
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Energetic ionic liquids (EILs) have various industrial applications because they release chemically stored energy under certain conditions. They can avoid some environmental problems caused by traditionally used toxic fuels. EILs, which are environmentally friendly and safer, are emerging as an alternative source for hypergolic bipropellant fuels. This review focuses on the crucial thermophysical properties of the EILs. The properties of imidazolium and triazolium-based ionic liquids (ILs) are discussed here. The thermophysical properties addressed, such as glass transition temperature, viscosity, and thermal stability, are critical for designing EILs to meet the need for sustainable energy solutions. Imidazolium-based ILs have tunable physical properties making them ideal for use in energy storage while triazolium-based ILs have thermal stability and energetic potential. As a result, it is important to understand and compile thermophysical properties so they can help researchers synthesize tailored compounds with desirable characteristics, advancing their application in energy storage and propulsion technologies. 
    more » « less
  2. Abstract The remarkable surge in energy demand has compelled the quest for high‐energy‐density battery systems. The Li–O2battery (LOB) and Li–air battery (LAB), owing to their extremely high theoretical energy density, have attracted extensive research in the past two decades. The commercial development of LOB is hampered due to the numerous challenges its components present. Ionic liquids (ILs) are considered potential electrolyte solvents of LOBs and LABs due to their excellent electrochemical stability, thermal stability, non‐flammability, low flammability, and O2solubility. In addition to electrolyte solvents, ILs also have other applications in LOB and LAB systems. This review reports the progress of IL‐based LOBs and LABs over the years since treported for the first time in 2005. The impact of the physiochemical properties of ILs on the performance of LOB and LAB at various operating conditions is thoroughly discussed. The various methodologies are also summarized that are employed to tune ILs’ physiochemical properties to render them more favorable for rechargeable lithium batteries. Tunable properties of ILs create the possibility of designing cost‐effective batteries with excellent safety, high energy density and high power density, and long‐term stability. 
    more » « less
  3. Ionic liquids (ILs) are highly tailorable materials with unique physical and chemical properties that set them apart from conventional organic solvents. As the library of readily accessible ILs continues to grow, so too does their relevance in applications ranging from material processing to electrochemical energy storage as solvents capable of accessing new chemistries disallowed by traditional chemicals. While a great deal of interest has been directed towards imidazolium and quaternary ammonium based ionic liquids, there are other understudied classes of cations which have potentially favorable properties for energy related applications. One such class is that with boronium cations. These cations have a unique structure with a formally negative boron flanked by positive nitrogens. This inherently zwitterionic structure presents interesting possibilities for electrochemical applications. To date only a handful of boronium cation-based ionic liquids have been thoroughly characterized despite exhibiting impressive electrochemical stabilities (> 5.0 V). In the present study we synthesized a series of ILs with novel boronium cations coupled with the bis(trifluoro-methanesulfonyl)imide anion. We then characterized the electrochemical and physical properties of these boronium ionic liquids by techniques such as cyclic voltammetry, broadband dielectric spectroscopy, oscillatory shear rheology, and thermogravimetric analysis. We will discuss how systematic variations in boronium cation structure impacted electrochemical and physical properties. 
    more » « less
  4. Ionic liquids (ILs) exhibit unique properties of good ionic conductivity, electrochemical and thermal stability, and nonflammability, which make them promising candidates for biomedical applications. The limitations of their cytocompatibility are enhanced by using bioionic liquids (BILs) derived from biological molecules such as amines, sugars, and organic acids. BILs can be synthesized using tailorable chemistries that enable their immobilization onto biopolymers. For example, the cholinium ion and its derivatives have found significant interest in tissue engineering and drug delivery systems. Ion‐doped BIL‐functionalized polymers and their composites can also be used to design pH and electrical responsive actuators and sensors. The cytocompatibility and low immunogenicity of BIL‐functionalized polymers enable the possibilities of their use for power storage devices as well as implantable devices. These devices are gaining recognition and importance in nucleic acid delivery and molecular medicine. This review focuses on the recent advances of BILs in biomedical applications. Specifically, the review explores BILs as agents for biopolymer functionalization and highlights BILs as solvents for supermolecular ionic networks. 
    more » « less
  5. Ionic liquids (ILs) are an extremely exciting class of electrolytes for energy storage applications because of their unique combination of properties. Upon dissolving alkali metal salts, such as Li or... 
    more » « less