skip to main content


Title: The Mutant β E202K Sliding Clamp Protein Impairs DNA Polymerase III Replication Activity
ABSTRACT Expression of the Escherichia coli dnaN -encoded β clamp at ≥10-fold higher than chromosomally expressed levels impedes growth by interfering with DNA replication. We hypothesized that the excess β clamp sequesters the replicative DNA polymerase III (Pol III) to inhibit replication. As a test of this hypothesis, we obtained eight mutant clamps with an inability to impede growth and measured their ability to stimulate Pol III replication in vitro . Compared with the wild-type clamp, seven of the mutants were defective, consistent with their elevated cellular levels failing to sequester Pol III. However, the β E202K mutant that bears a glutamic acid-to-lysine substitution at residue 202 displayed an increased affinity for Pol IIIα and Pol III core (Pol IIIαεθ), suggesting that it could still sequester Pol III effectively. Of interest, β E202K supported in vitro DNA replication by Pol II and Pol IV but was defective with Pol III. Genetic experiments indicated that the dnaN E202K strain remained proficient in DNA damage-induced mutagenesis but was induced modestly for SOS and displayed sensitivity to UV light and methyl methanesulfonate. These results correlate an impaired ability of the mutant β E202K clamp to support Pol III replication in vivo with its in vitro defect in DNA replication. Taken together, our results (i) support the model that sequestration of Pol III contributes to growth inhibition, (ii) argue for the existence of an additional mechanism that contributes to lethality, and (iii) suggest that physical and functional interactions of the β clamp with Pol III are more extensive than appreciated currently. IMPORTANCE The β clamp plays critically important roles in managing the actions of multiple proteins at the replication fork. However, we lack a molecular understanding of both how the clamp interacts with these different partners and the mechanisms by which it manages their respective actions. We previously exploited the finding that an elevated cellular level of the β clamp impedes Escherichia coli growth by interfering with DNA replication. Using a genetic selection method, we obtained novel mutant β clamps that fail to inhibit growth. Their analysis revealed that β E202K is unique among them. Our work offers new insights into how the β clamp interacts with and manages the actions of E. coli DNA polymerases II, III, and IV.  more » « less
Award ID(s):
1935089
NSF-PAR ID:
10327964
Author(s) / Creator(s):
; ; ; ; ; ;
Editor(s):
Silhavy, Thomas J.
Date Published:
Journal Name:
Journal of Bacteriology
Volume:
203
Issue:
23
ISSN:
0021-9193
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Silhavy, Thomas J. (Ed.)
    ABSTRACT Expression of the Escherichia coli dnaN -encoded β clamp at ≥10-fold higher than chromosomally expressed levels impedes growth by interfering with DNA replication. A mutant clamp (β E202K bearing a glutamic acid-to-lysine substitution at residue 202) binds to DNA polymerase III (Pol III) with higher affinity than the wild-type clamp, suggesting that its failure to impede growth is independent of its ability to sequester Pol III away from the replication fork. Our results demonstrate that the dnaN E202K strain underinitiates DNA replication due to insufficient levels of DnaA-ATP and expresses several DnaA-regulated genes at altered levels, including nrdAB , that encode the class 1a ribonucleotide reductase (RNR). Elevated expression of nrdAB was dependent on hda function. As the β clamp-Hda complex regulates the activity of DnaA by stimulating its intrinsic ATPase activity, this finding suggests that the dnaN E202K allele supports an elevated level of Hda activity in vivo compared with the wild-type strain. In contrast, using an in vitro assay reconstituted with purified components the β E202K and wild-type clamp proteins supported comparable levels of Hda activity. Nevertheless, co-overexpression of the nrdAB -encoded RNR relieved the growth defect caused by elevated levels of the β clamp. These results support a model in which increased cellular levels of DNA precursors relieve the ability of elevated β clamp levels to impede growth and suggest either that multiple effects stemming from the dnaN E202K mutation contribute to elevated nrdAB levels or that Hda plays a noncatalytic role in regulating DnaA-ATP by sequestering it to reduce its availability. IMPORTANCE DnaA bound to ATP acts in initiation of DNA replication and regulates the expression of several genes whose products act in DNA metabolism. The state of the ATP bound to DnaA is regulated in part by the β clamp-Hda complex. The dnaN E202K allele was identified by virtue of its inability to impede growth when expressed ≥10-fold higher than chromosomally expressed levels. While the dnaN E202K strain exhibits several phenotypes consistent with heightened Hda activity, the wild-type and β E202K clamp proteins support equivalent levels of Hda activity in vitro . Taken together, these results suggest that β E202K -Hda plays a noncatalytic role in regulating DnaA-ATP. This, as well as alternative models, is discussed. 
    more » « less
  2. Abstract

    Single-stranded DNA binding proteins (SSBs) avidly bind ssDNA and yet enzymes that need to act during DNA replication and repair are not generally impeded by SSB, and are often stimulated by SSB. Here, the effects of Escherichia coli SSB on the activities of the DNA polymerase processivity clamp loader were investigated. SSB enhances binding of the clamp loader to DNA by increasing the lifetime on DNA. Clamp loading was measured on DNA substrates that differed in length of ssDNA overhangs to permit SSB binding in different binding modes. Even though SSB binds DNA adjacent to single-stranded/double-stranded DNA junctions where clamps are loaded, the rate of clamp loading on DNA was not affected by SSB on any of the DNA substrates. Direct measurements of the relative timing of DNA-SSB remodeling and enzyme–DNA binding showed that the clamp loader rapidly remodels SSB on DNA such that SSB has little effect on DNA binding rates. However, when SSB was mutated to reduce protein–protein interactions with the clamp loader, clamp loading was inhibited by impeding binding of the clamp loader to DNA. Thus, protein–protein interactions between the clamp loader and SSB facilitate rapid DNA-SSB remodeling to allow rapid clamp loader-DNA binding and clamp loading.

     
    more » « less
  3. mall nuclear RNAs (snRNAs) play essential roles in spliceosome assembly and splicing. Most snRNAs are transcribed by the DNA-dependent RNA polymerase II (Pol II) and require 3' end endonucleolytic cleavage. We have previously shown that the Arabidopsis (Arabidopsis thaliana) Defective in snRNA Processing 1 (DSP1) complex, composed of at least five subunits, is responsible for snRNA 3' maturation and is essential for plant development. Yet, it remains unclear how DSP1 complex subunits act together to process snRNAs. Here we show that DSP4, a member of the metallo-β-lactamase family, physically interacts with DSP1 through its β-Casp domain. Null dsp4-1 mutants have pleiotropic developmental defects, including impaired pollen development, and reduced pre-snRNA transcription and 3' maturation, resembling the phenotype of the dsp1-1 mutant. Interestingly, dsp1-1 dsp4-1 double mutants exhibit complete male sterility and reduced pre-snRNA transcription and 3' end maturation, unlike dsp1-1 or dsp4-1. In addition, Pol II occupancy at snRNA loci is lower in dsp1-1 dsp4-1 than in either single mutant. We also detected miscleaved pre-snRNAs in dsp1-1 dsp4-1, but not in dsp1-1 or dsp4-1. Taken together, these data reveal that DSP1 and DSP4 function is essential for pollen development, and that the two cooperatively promote pre-snRNA transcription and 3' end processing efficiency and accuracy. 
    more » « less
  4. null (Ed.)
    In the mid 1970s, Miroslav Radman and Evelyn Witkin proposed that Escherichia coli must encode a specialized error-prone DNA polymerase (pol) to account for the 100-fold increase in mutations accompanying induction of the SOS regulon. By the late 1980s, genetic studies showed that SOS mutagenesis required the presence of two “UV mutagenesis” genes, umuC and umuD, along with recA. Guided by the genetics, decades of biochemical studies have defined the predicted error-prone DNA polymerase as an activated complex of these three gene products, assembled as a mutasome, pol V Mut = UmuD’2C-RecA-ATP. Here, we explore the role of the β-sliding processivity clamp on the efficiency of pol V Mut-catalyzed DNA synthesis on undamaged DNA and during translesion DNA synthesis (TLS). Primer elongation efficiencies and TLS were strongly enhanced in the presence of β. The results suggest that β may have two stabilizing roles: its canonical role in tethering the pol at a primer-3’-terminus, and a possible second role in inhibiting pol V Mut’s ATPase to reduce the rate of mutasome-DNA dissociation. The identification of umuC, umuD, and recA homologs in numerous strains of pathogenic bacteria and plasmids will ensure the long and productive continuation of the genetic and biochemical journey initiated by Radman and Witkin. 
    more » « less
  5. Abstract

    Thiolutin is a natural product transcription inhibitor with an unresolved mode of action. Thiolutin and the related dithiolopyrrolone holomycin chelate Zn2+ and previous studies have concluded that RNA Polymerase II (Pol II) inhibition in vivo is indirect. Here, we present chemicogenetic and biochemical approaches to investigate thiolutin's mode of action in Saccharomyces cerevisiae. We identify mutants that alter sensitivity to thiolutin. We provide genetic evidence that thiolutin causes oxidation of thioredoxins in vivo and that thiolutin both induces oxidative stress and interacts functionally with multiple metals including Mn2+ and Cu2+, and not just Zn2+. Finally, we show direct inhibition of RNA polymerase II (Pol II) transcription initiation by thiolutin in vitro in support of classical studies that thiolutin can directly inhibit transcription in vitro. Inhibition requires both Mn2+ and appropriate reduction of thiolutin as excess DTT abrogates its effects. Pause prone, defective elongation can be observed in vitro if inhibition is bypassed. Thiolutin effects on Pol II occupancy in vivo are widespread but major effects are consistent with prior observations for Tor pathway inhibition and stress induction, suggesting that thiolutin use in vivo should be restricted to studies on its modes of action and not as an experimental tool.

     
    more » « less