skip to main content


Title: A novel biological treatment of hydrothermal carbonization wastewater by using Thraustochytrium striatum
Hydrothermal conversion (HC) is a promising thermochemical technology to produce biofuels and bioproducts from biomass. However, the disposal of HC aqueous product (HC-AP) is one of the biggest challenges. This research investigated a new biological method using a marine protist, Thraustochytrium striatum to treat HC-AP from hydrothermal carbonization of municipal solid waste. A full factorial experiment was carried out to examine the effects of operation conditions on HC-AP treatment regarding cell growth, cellular lipid accumulation, and removals of total organic carbon (TOC)/total nitrogen (TN)/total phosphorus (TP)/recalcitrant compounds. Among four factors, only dilution rate and nitrogen concentration had significant effects on all responses, while salinity and pH were insignificant. Under the optimum conditions, T. striatum achieved 1.27 g/L dry cell mass and 14 % cellular lipid content while removing 82 % TOC, 53 % TN, 94 % TP, and ∼89 % refractory compounds. This research offers a new biological platform for HC-AP treatment and valorization.  more » « less
Award ID(s):
2001568 2001625
NSF-PAR ID:
10334945
Author(s) / Creator(s):
Date Published:
Journal Name:
Process biochemistry
Volume:
112
ISSN:
1359-5113
Page Range / eLocation ID:
217-222
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Long‐term ecological research can resolve effects of disturbance on ecosystem dynamics by capturing the scale of disturbance and interactions with environmental changes. To quantify how disturbances interact with long‐term directional changes (sea‐level rise, freshwater restoration), we studied 17 yr of monthly dissolved organic carbon (DOC), total nitrogen (TN), and phosphorus (TP) concentrations and bacterioplankton productivity across freshwater‐to‐marine estuary gradients exposed to multiple disturbance events (e.g., droughts, fire, hurricanes, and low‐temperature anomalies) and long‐term increases in water levels. By studying two neighboring drainages that differ in hydrologic connectivity, we additionally tested how disturbance legacies are shaped by hydrologic connectivity. We predicted that disturbance events would interact with long‐term increases in water levels in freshwater and marine ecosystems to increase spatiotemporal similarity (i.e., synchrony) of organic matter, nutrients, and microbial activities. Wetlands along the larger, deeper, and tidally influenced Shark River Slough (SRS) drainage had higher and more variable DOC, TN, and TP concentrations than wetlands along the smaller, shallower, tidally restricted Taylor River Slough/Panhandle (TS/Ph) drainage. Along SRS, DOC concentrations declined with proximity to coast, and increased in magnitude and variability following drought and flooding in 2015 and a hurricane in 2017. Along TS/Ph, DOC concentrations varied by site (higher in marine than freshwater wetlands) but not year. In both drainages, increases in TN from upstream freshwater marshes occurred following fire in 2008 and droughts in 2010 and 2015, whereas downstream increases in TP occurred with coastal storm surge from hurricanes in 2005 and 2017. Decreases in DOC:TN and DOC:TP were explained by increased TN and TP. Increases in bacterioplankton productivity occurred throughout both drainages following low‐temperature events (2010 and 2011) and a hurricane (2017). Long‐term TN and TP concentrations and bacterioplankton productivity were correlated (r > 0.5) across a range of sampling distances (1–50 km), indicating spatiotemporal synchrony. DOC concentrations were not synchronized across space or time. Our study advances disturbance ecology theory by illustrating how disturbance events interact with long‐term environmental changes and hydrologic connectivity to determine the magnitude and extent of disturbance legacies. Understanding disturbance legacies will enhance prediction and enable more effective management of rapidly changing ecosystems.

     
    more » « less
  2. Site description. This data package consists of data obtained from sampling surface soil (the 0-7.6 cm depth profile) in black mangrove (Avicennia germinans) dominated forest and black needlerush (Juncus roemerianus) saltmarsh along the Gulf of Mexico coastline in peninsular west-central Florida, USA. This location has a subtropical climate with mean daily temperatures ranging from 15.4 °C in January to 27.8 °C in August, and annual precipitation of 1336 mm. Precipitation falls as rain primarily between June and September. Tides are semi-diurnal, with 0.57 m median amplitudes during the year preceding sampling (U.S. NOAA National Ocean Service, Clearwater Beach, Florida, station 8726724). Sea-level rise is 4.0 ± 0.6 mm per year (1973-2020 trend, mean ± 95 % confidence interval, NOAA NOS Clearwater Beach station). The A. germinans mangrove zone is either adjacent to water or fringed on the seaward side by a narrow band of red mangrove (Rhizophora mangle). A near-monoculture of J. roemerianus is often adjacent to and immediately landward of the A. germinans zone. The transition from the mangrove to the J. roemerianus zone is variable in our study area. An abrupt edge between closed-canopy mangrove and J. roemerianus monoculture may extend for up to several hundred meters in some locations, while other stretches of ecotone present a gradual transition where smaller, widely spaced trees are interspersed into the herbaceous marsh. Juncus roemerianus then extends landward to a high marsh patchwork of succulent halophytes (including Salicornia bigellovi, Sesuvium sp., and Batis maritima), scattered dwarf mangrove, and salt pans, followed in turn by upland vegetation that includes Pinus sp. and Serenoa repens. Field design and sample collection. We established three study sites spaced at approximately 5 km intervals along the western coastline of the central Florida peninsula. The sites consisted of the Salt Springs (28.3298°, -82.7274°), Energy Marine Center (28.2903°, -82.7278°), and Green Key (28.2530°, -82.7496°) sites on the Gulf of Mexico coastline in Pasco County, Florida, USA. At each site, we established three plot pairs, each consisting of one saltmarsh plot and one mangrove plot. Plots were 50 m^2 in size. Plots pairs within a site were separated by 230-1070 m, and the mangrove and saltmarsh plots composing a pair were 70-170 m apart. All plot pairs consisted of directly adjacent patches of mangrove forest and J. roemerianus saltmarsh, with the mangrove forests exhibiting a closed canopy and a tree architecture (height 4-6 m, crown width 1.5-3 m). Mangrove plots were located at approximately the midpoint between the seaward edge (water-mangrove interface) and landward edge (mangrove-marsh interface) of the mangrove zone. Saltmarsh plots were located 20-25 m away from any mangrove trees and into the J. roemerianus zone (i.e., landward from the mangrove-marsh interface). Plot pairs were coarsely similar in geomorphic setting, as all were located on the Gulf of Mexico coastline, rather than within major sheltering formations like Tampa Bay, and all plot pairs fit the tide-dominated domain of the Woodroffe classification (Woodroffe, 2002, "Coasts: Form, Process and Evolution", Cambridge University Press), given their conspicuous semi-diurnal tides. There was nevertheless some geomorphic variation, as some plot pairs were directly open to the Gulf of Mexico while others sat behind keys and spits or along small tidal creeks. Our use of a plot-pair approach is intended to control for this geomorphic variation. Plot center elevations (cm above mean sea level, NAVD 88) were estimated by overlaying the plot locations determined with a global positioning system (Garmin GPS 60, Olathe, KS, USA) on a LiDAR-derived bare-earth digital elevation model (Dewberry, Inc., 2019). The digital elevation model had a vertical accuracy of ± 10 cm (95 % CI) and a horizontal accuracy of ± 116 cm (95 % CI). Soil samples were collected via coring at low tide in June 2011. From each plot, we collected a composite soil sample consisting of three discrete 5.1 cm diameter soil cores taken at equidistant points to 7.6 cm depth. Cores were taken by tapping a sleeve into the soil until its top was flush with the soil surface, sliding a hand under the core, and lifting it up. Cores were then capped and transferred on ice to our laboratory at the University of South Florida (Tampa, Florida, USA), where they were combined in plastic zipper bags, and homogenized by hand into plot-level composite samples on the day they were collected. A damp soil subsample was immediately taken from each composite sample to initiate 1 y incubations for determination of active C and N (see below). The remainder of each composite sample was then placed in a drying oven (60 °C) for 1 week with frequent mixing of the soil to prevent aggregation and liberate water. Organic wetland soils are sometimes dried at 70 °C, however high drying temperatures can volatilize non-water liquids and oxidize and decompose organic matter, so 50 °C is also a common drying temperature for organic soils (Gardner 1986, "Methods of Soil Analysis: Part 1", Soil Science Society of America); we accordingly chose 60 °C as a compromise between sufficient water removal and avoidance of non-water mass loss. Bulk density was determined as soil dry mass per core volume (adding back the dry mass equivalent of the damp subsample removed prior to drying). Dried subsamples were obtained for determination of soil organic matter (SOM), mineral texture composition, and extractable and total carbon (C) and nitrogen (N) within the following week. Sample analyses. A dried subsample was apportioned from each composite sample to determine SOM as mass loss on ignition at 550 °C for 4 h. After organic matter was removed from soil via ignition, mineral particle size composition was determined using a combination of wet sieving and density separation in 49 mM (3 %) sodium hexametaphosphate ((NaPO_3)_6) following procedures in Kettler et al. (2001, Soil Science Society of America Journal 65, 849-852). The percentage of dry soil mass composed of silt and clay particles (hereafter, fines) was calculated as the mass lost from dispersed mineral soil after sieving (0.053 mm mesh sieve). Fines could have been slightly underestimated if any clay particles were burned off during the preceding ignition of soil. An additional subsample was taken from each composite sample to determine extractable N and organic C concentrations via 0.5 M potassium sulfate (K_2SO_4) extractions. We combined soil and extractant (ratio of 1 g dry soil:5 mL extractant) in plastic bottles, reciprocally shook the slurry for 1 h at 120 rpm, and then gravity filtered it through Fisher G6 (1.6 μm pore size) glass fiber filters, followed by colorimetric detection of nitrite (NO_2^-) + nitrate (NO_3^-) and ammonium (NH_4^+) in the filtrate (Hood Nowotny et al., 2010,Soil Science Society of America Journal 74, 1018-1027) using a microplate spectrophotometer (Biotek Epoch, Winooski, VT, USA). Filtrate was also analyzed for dissolved organic C (referred to hereafter as extractable organic C) and total dissolved N via combustion and oxidation followed by detection of the evolved CO_2 and N oxide gases on a Formacs HT TOC/TN analyzer (Skalar, Breda, The Netherlands). Extractable organic N was then computed as total dissolved N in filtrate minus extractable mineral N (itself the sum of extractable NH_4-N and NO_2-N + NO_3-N). We determined soil total C and N from dried, milled subsamples subjected to elemental analysis (ECS 4010, Costech, Inc., Valencia, CA, USA) at the University of South Florida Stable Isotope Laboratory. Median concentration of inorganic C in unvegetated surface soil at our sites is 0.5 % of soil mass (Anderson, 2019, Univ. of South Florida M.S. thesis via methods in Wang et al., 2011, Environmental Monitoring and Assessment 174, 241-257). Inorganic C concentrations are likely even lower in our samples from under vegetation, where organic matter would dilute the contribution of inorganic C to soil mass. Nevertheless, the presence of a small inorganic C pool in our soils may be counted in the total C values we report. Extractable organic C is necessarily of organic C origin given the method (sparging with HCl) used in detection. Active C and N represent the fractions of organic C and N that are mineralizable by soil microorganisms under aerobic conditions in long-term soil incubations. To quantify active C and N, 60 g of field-moist soil were apportioned from each composite sample, placed in a filtration apparatus, and incubated in the dark at 25 °C and field capacity moisture for 365 d (as in Lewis et al., 2014, Ecosphere 5, art59). Moisture levels were maintained by frequently weighing incubated soil and wetting them up to target mass. Daily CO_2 flux was quantified on 29 occasions at 0.5-3 week intervals during the incubation period (with shorter intervals earlier in the incubation), and these per day flux rates were integrated over the 365 d period to compute an estimate of active C. Observations of per day flux were made by sealing samples overnight in airtight chambers fitted with septa and quantifying headspace CO_2 accumulation by injecting headspace samples (obtained through the septa via needle and syringe) into an infrared gas analyzer (PP Systems EGM 4, Amesbury, MA, USA). To estimate active N, each incubated sample was leached with a C and N free, 35 psu solution containing micronutrients (Nadelhoffer, 1990, Soil Science Society of America Journal 54, 411-415) on 19 occasions at increasing 1-6 week intervals during the 365 d incubation, and then extracted in 0.5 M K_2SO_4 at the end of the incubation in order to remove any residual mineral N. Active N was then quantified as the total mass of mineral N leached and extracted. Mineral N in leached and extracted solutions was detected as NH_4-N and NO_2-N + NO_3-N via colorimetry as above. This incubation technique precludes new C and N inputs and persistently leaches mineral N, forcing microorganisms to meet demand by mineralizing existing pools, and thereby directly assays the potential activity of soil organic C and N pools present at the time of soil sampling. Because this analysis commences with disrupting soil physical structure, it is biased toward higher estimates of active fractions. Calculations. Non-mobile C and N fractions were computed as total C and N concentrations minus the extractable and active fractions of each element. This data package reports surface-soil constituents (moisture, fines, SOM, and C and N pools and fractions) in both gravimetric units (mass constituent / mass soil) and areal units (mass constituent / soil surface area integrated through 7.6 cm soil depth, the depth of sampling). Areal concentrations were computed as X × D × 7.6, where X is the gravimetric concentration of a soil constituent, D is soil bulk density (g dry soil / cm^3), and 7.6 is the sampling depth in cm. 
    more » « less
  3. To address some challenges of food security and sustainability of the poultry processing industry, a sequential membrane process of ultrafiltration (UF), forward osmosis (FO), and reverse osmosis (RO) is proposed to treat semi-processed poultry slaughterhouse wastewater (PSWW) and water recovery. The pretreatment of PSWW with UF removed 36.7% of chemical oxygen demand (COD), 38.9% of total phosphorous (TP), 24.7% of total solids (TS), 14.5% of total volatile solids (TVS), 27.3% of total fixed solids (TFS), and 12.1% of total nitrogen (TN). Then, the PSWW was treated with FO membrane in FO mode, pressure retarded osmosis (PRO) mode, and L-DOPA coated membrane in the PRO mode. The FO mode was optimal for PSWW treatment by achieving the highest average flux of 10.4 ± 0.2 L/m2-h and the highest pollutant removal efficiency; 100% of COD, 100% of TP, 90.5% of TS, 85.3% of TVS, 92.1% of TFS, and 37.2% of TN. The performance of the FO membrane was entirely restored by flushing the membrane with 0.1% sodium dodecyl sulfate solution. RO significantly removed COD, TS, TVS, TFS, and TP. However, TN was reduced by only 62% because of the high ammonia concentration present in the draw solution. Overall, the sequential membrane process (UF-FO-RO) showed excellent performance by providing high rejection efficiency for pollutant removal and water recovery. 
    more » « less
  4. Abstract

    In salt marshes of the Southeastern USA, purple marsh crabs (Sesarma reticulatum), hereafterSesarma, aggregate in grazing and burrowing fronts at the heads of tidal creeks, accelerating creek incision into marsh platforms. We explored the effects of this keystone grazer and sediment engineer on salt marsh sediment accumulation, hydrology, and carbon (C) and nitrogen (N) turnover using radionuclides (210Pb and7Be), total hydrolyzable amino acids (THAA), and C and N stable isotopes (δ13C and δ15N) in sediment from pairedSesarma-grazed and un-grazed creeks.Sesarma-grazed-creek sediments exhibited greater bioturbation and tidal inundation compared to sediments in un-grazed creeks, as indicated by larger210Pb and7Be inventories. Total organic carbon (TOC) to total nitrogen (TN) weight ratios (C:N) were higher and δ15N values were lower in grazed-creek sediments than in un-grazed-creek sediments, suggestingSesarmaremove and assimilate N in their tissues, and excrete N with lower δ15N values into sediments. In support of this inference, the percent total carbon (TC) and percent TOC declined by nearly half, percent TN decreased by ~ 80%, and the C:N ratio exhibited a ~ threefold increase betweenSesarmafore-gut and hind-gut contents. An estimated 91% ofSesarma’s diet was derived fromSpartina alterniflora,the region’s dominant salt marsh plant. We found that, asSesarmagrazing fronts progress across marsh landscapes, they enhance the decay ofSpartina-derived organic matter and prolong marsh tidal inundation. These findings highlight the need to better account for the effects of keystone grazers and sediment engineers, likeSesarma, in estimates of the stability and size of blue C stores in coastal wetlands.

     
    more » « less
  5. Chi Fru, Ernest ; Chik, Alex ; Colwell, Fredrick ; Dittrich, Maria ; Engel, Annette ; Keenan, Sarah ; Meckenstock, Rainer ; Omelon, Christopher ; Purkamo, Lotta ; Weisener, Chris (Ed.)

    Roots are common features in basaltic lava tube caves on the island of Hawai‘i. For the past 50 years, new species of cave-adapted invertebrates, including cixiid planthoppers, crickets, thread-legged bugs, and spiders, have been discovered from root patches in lava tubes on different volcanoes and across variable climatic conditions. Assessing vegetation on the surface above lava tube passages, as well as genetic characterization of roots from within lava tubes, suggest that most roots belong to the native pioneer tree, ‘ōhi‘a lehua (Metrosideros polymorpha). Planthoppers are the primary consumers of sap at the base of the subsurface food web. However, root physicochemistry and rhizobiome microbial diversity and functional potential have received little attention. This study focuses on characterizing the ‘ōhi‘a rhizobiome, accessed from free-hanging roots inside lava tubes. Using these results, we can begin to evaluate the development and evolution of plant-microbe-invertebrate relationships.

    We explored lava tubes formed in flows of differing elevations and ages, from about 140 to 3000 years old, on Mauna Loa, Kīlauea, and Hualālai volcanoes on Hawai‘i Island. Invertebrate diversity was evaluated from root galleries and non-root galleries, in situ fluid physicochemistry was measured, and root and bare rock fluids (e.g., water, sap) were collected to determine major ion concentrations, as well as non-purgeable organic carbon (NPOC) and total nitrogen (TN) content. To verify root identity, DNA was extracted, and three sets of primers were used. After screening for onlyMetrosiderosspp., the V4 region of the 16S rRNA gene was sequenced and taxonomy was assigned.

    Root fluids were viscous and ranged in color from clear to yellow to reddish orange. Root fluids had 2X to 10X higher major ion concentrations compared to rock water. The average root NPOC and TN concentrations were 192 mg/L and 5.2 mg/L, respectively, compared to rock water that had concentrations of 6.8 mg/L and 1.8 mg/L, respectively. Fluids from almost 300 root samples had pH values that ranged from 2.2 to 5.6 (average pH 4.63) and were lower than rock water (average pH 6.39). Root fluid pH was comparable to soil pH from montane wet forests dominated by ‘ōhi‘a (Selmants et al. 2016), which can grow in infertile soil with pH values as low as 3.6. On Hawai‘i, rain water pH averages 5.2 at sea level and systematically decreases with elevation to pH 4.3 at 2500 m (Miller and Yoshinaga 2012), but root fluid pH did not correlate with elevation, temperature, relative humidity, inorganic and organic constituents, or age of flow. Root fluid acidity is likely due to concentrated organic compounds, sourced as root exudates, and this habitat is acidic for the associated invertebrates.

    From 62 root samples, over 66% were identified to the genusMetrosideros. A few other identifications of roots from lava tube systems where there had been extensive clear-cutting and ranching included monkey pod tree, coconut palm,Ficusspp., and silky oak.

    The 16S rRNA gene sequence surveys revealed that root bacterial communities were dominated by few groups, including Burkholderiaceae, as well as Acetobacteraceae, Sphingomonadaceae, Acidobacteriaceae, Gemmataceae, Xanthobacteraceae, and Chitinophagaceae. However, most of the reads could not be classified to a specific genus, which suggested that the rhizobiome harbor novel diversity. Diversity was higher from wetter climates. The root communities were distinct from those described previously from ‘ōhi‘a flowers and leaves (Junker and Keller 2015) and lava tube rocky surfaces (Hathaway et al. 2014) where microbial groups were specifically presumed capable of heterotrophy, methanotrophy, diazotrophy, and nitrification. Less can be inferred for the rhizobiome metabolism, although most taxa are likely aerobic heterotrophs. Within the Burkholderiaceae, there were high relative abundances of sequences affiliated with the genusParaburkholderia, which includes known plant symbionts, as well as the acidophilic generaAcidocellaandAcidisomafrom the Acetobacteraceae, which were retrieved predominately from caves in the oldest lava flows that also had the lowest root pH values. It is likely that the bacterial groups are capable of degrading exudates and providing nutritional substrates for invertebrate consumers that are not provided by root fluids (i.e., phloem) alone.

    As details about the biochemistry of ‘ōhi‘a have been missing, characterizing the rhizobiome from lava tubes will help to better understand potential plant-microbe-invertebrate interactions and ecological and evolutionary relationships through time. In particular, the microbial rhizobiome may produce compounds used by invertebrates nutritionally or that affect their behavior, and changes to the rhizobiome in response to environmental conditions may influence invertebrate interactions with the roots, which could be important to combat climate change effects or invasive species introductions.

     
    more » « less