skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Enabling data science education in STEM disciplines through supervised undergraduate research experiences
Data Science plays a vital role in sciences and engineering disciplines to discover meaningful information and predict the outcome of real-world problems. Despite the significance of this field and high demand, knowledge of how to effectively provide data science research experience to STEM students is scarce. This paper focuses on the role of data science and analytics education to improve the students' computing and analytical skills across a range of domain-specific problems. The paper studies four examples of data-intensive STEM projects for supervised undergraduate research experiences (SURE) in Mechanical Engineering, Biomedical science, Quantum Physics, and Cybersecurity. The developed projects include the applications of data science for improving additive manufacturing, automating microscopy image analysis, identifying the quantum optical modes, and detecting network intrusion. The paper aims to provide some guidelines to effectively educate the next generation of STEM undergraduate and graduate students and prepare STEM professionals with interdisciplinary knowledge, skills, and competencies in data science. The paper includes a summary of activities and outcomes from our research and education in the field of data science and machine learning. We will evaluate the student learning outcomes in solving big data interdisciplinary projects to confront the new challenges in a computationally-driven world.  more » « less
Award ID(s):
2011900
PAR ID:
10328039
Author(s) / Creator(s):
Date Published:
Journal Name:
American Society of Electrical Engineers (ASEE) Annual Conference Proceeding
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Data Science plays a vital role in sciences and engineering disciplines to discover meaningful information and predict the outcome of real-world problems. Despite the significance of this field and high demand, knowledge of how to effectively provide data science research experience to STEM students is scarce. This paper focuses on the role of data science and analytics education to improve the students' computing and analytical skills across a range of domain-specific problems. The paper studies four examples of data-intensive STEM projects for supervised undergraduate research experiences (SURE) in Mechanical Engineering, Biomedical science, Quantum Physics, and Cybersecurity. The developed projects include the applications of data science for improving additive manufacturing, automating microscopy images analysis, identifying the quantum optical modes, and detecting network intrusion. The paper aims to provide some guidelines to effectively educate the next generation of STEM undergraduate and graduate students and prepare STEM professionals with interdisciplinary knowledge, skills, and competencies in data science. The paper includes a summary of activities and outcomes from our research and education in the field of data science and machine learning. We will evaluate the student learning outcomes in solving big data interdisciplinary projects to confront the new challenges in a computationally-driven world. 
    more » « less
  2. Engineering Technology (ET) programs at community colleges and colleges/universities play a vital role in meeting the growing national demand for STEM graduates. Many accredited ET programs feature design projects that allow students to apply content knowledge and gain valuable workplace skills. Undergraduate research, especially inquiry-based projects, helps students take ownership of their own learning and see the real-world relevance of research as they learn problem-solving skills. EvaluateUR-CURE, an evidence-based method developed at SUNY Buffalo, measures a broad range of desirable outcomes that include both content knowledge and outcomes that are critically important in the workplace, such as communication skills, creativity, autonomy, an ability to overcome obstacles, critical thinking, and problem-solving skills. EvaluateUR-CURE also provides students opportunities to develop metacognitive skills as a way to identify how much academic progress they have made or still need to make. This paper addresses the process of development of performance indicators and presents the results of assessment and evaluation of ETAC ABET student outcomes and outcome categories of EvaluateUR-CURE. 
    more » « less
  3. This research paper presents preliminary results of an NSF-supported interdisciplinary collaboration between undergraduate engineering students and preservice teachers. The fields of engineering and elementary education share similar challenges when it comes to preparing undergraduate students for the new demands they will encounter in their profession. Engineering students need interprofessional skills that will help them value and negotiate the contributions of various disciplines while working on problems that require a multidisciplinary approach. Increasingly, the solutions to today's complex problems must integrate knowledge and practices from multiple disciplines and engineers must be able to recognize when expertise from outside their field can enhance their perspective and ability to develop innovative solutions. However, research suggests that it is challenging even for professional engineers to understand the roles, responsibilities, and integration of various disciplines, and engineering curricula have traditionally left little room for development of non-technical skills such as effective communication with a range of audiences and an ability to collaborate in multidisciplinary teams. Meanwhile, preservice teachers need new technical knowledge and skills that go beyond traditional core content knowledge, as they are now expected to embed engineering into science and coding concepts into traditional subject areas. There are nationwide calls to integrate engineering and coding into PreK-6 education as part of a larger campaign to attract more students to STEM disciplines and to increase exposure for girls and minority students who remain significantly underrepresented in engineering and computer science. Accordingly, schools need teachers who have not only the knowledge and skills to integrate these topics into mainstream subjects, but also the intention to do so. However, research suggests that preservice teachers do not feel academically prepared and confident enough to teach engineering-related topics. This interdisciplinary project provided engineering students with an opportunity to develop interprofessional skills as well as to reinforce their technical knowledge, while preservice teachers had the opportunity to be exposed to engineering content, more specifically coding, and develop competence for their future teaching careers. Undergraduate engineering students enrolled in a computational methods course and preservice teachers enrolled in an educational technology course partnered to plan and deliver robotics lessons to fifth and sixth graders. This paper reports on the effects of this collaboration on twenty engineering students and eight preservice teachers. T-tests were used to compare participants’ pre-/post- scores on a coding quiz. A post-lesson written reflection asked the undergraduate students to describe their robotics lessons and what they learned from interacting with their cross disciplinary peers and the fifth/sixth graders. Content analysis was used to identify emergent themes. Engineering students’ perceptions were generally positive, recounting enjoyment interacting with elementary students and gaining communication skills from collaborating with non-technical partners. Preservice teachers demonstrated gains in their technical knowledge as measured by the coding quiz, but reported lacking the confidence to teach coding and robotics independently of their partner engineering students. Both groups reported gaining new perspectives from working in interdisciplinary teams and seeing benefits for the fifth and sixth grade participants, including exposing girls and students of color to engineering and computing. 
    more » « less
  4. null (Ed.)
    STEM (science, technology, engineering, mathematics) graduate programs excel at developing students’ technical expertise and research skills. The interdisciplinary nature of many STEM research projects means that graduate students often find themselves paired with experts from other fields and asked to work together to solve complex problems. At Michigan State University, the College of Engineering has developed a graduate level course that helps students build professional skills (communications, teamwork, leadership) to enhance their participation in these types of interdisciplinary projects. This semester-long course also includes training on research mentoring, helping students work more effectively with their current faculty mentors and build skills to serve as mentors themselves. Discussions of research ethics are integrated throughout the course, which allows participants to partially fulfill graduate training requirements in the responsible conduct of research. This paper will discuss the development of this course, which is based in part on curriculum developed as part of an ongoing training grant from the National Science Foundation. 18 graduate students from Engineering and other STEM disciplines completed the course in Spring 2019, and we will present data gathered from these participants along with lessons learned and suggestions for institutions interested in adapting these open-source curriculum materials for their own use. Students completed pre- and post-course evaluations, which asked about their expectations and reasons for participating in the course at the outset and examined their experiences and learning at the end. Overall, students reported that the course content was highly relevant to their daily work and that they were highly satisfied with the content of all three major focus areas (communications, teamwork, leadership). Participants also reported that the structure and the pacing of the course were appropriate, and that the experience had met their expectations. The results related to changes in students’ knowledge indicate that the course was effective in increasing participants understanding of and ability to employ professional skills for communications, teamwork and leadership. Statistical analyses were conducted by creating latent constructs for each item as applicable and then running paired t-tests. The evaluation also demonstrated increases in students’ interest, knowledge and confidence of the professional skills offered in the course. 
    more » « less
  5. null (Ed.)
    The role of modern engineers as problem-definer often require collaborating with cross-disciplinary teams of professionals to understand and effectively integrate the role of other disciplines and accelerate innovation. To prepare future engineers for this emerging role, undergraduate engineering students should engage in collaborative and interdisciplinary activities with faculties and students from various disciplines (e.g., engineering and social science). Such cross-disciplinary experiences of undergraduate engineering students are not common in today’s university curriculum. Through a project funded by the division of Engineering Education and Centers (EEC) of the National Science Foundation (NSF), a research team of the West Virginia University developed and offered a Holistic Engineering Project Experience (HEPE) to the engineering students. Holistic engineering is an approach catering to the overall engineering profession, instead of focusing on any distinctive engineering discipline such as electrical, civil, chemical, or mechanical engineering. Holistic Engineering is based upon the fact that the traditional engineering courses do not offer sufficient non-technical skills to the engineering students to work effectively in cross-disciplinary social problems (e.g., development of transportation systems and services). The Holistic Engineering approach enables engineering students to learn non-engineering skills (e.g., strategic communication skills) beyond engineering math and sciences, which play a critical role in solving complex 21st-century engineering problems. The research team offered the HEPE course in Spring 2020 semester, where engineering students collaborated with social science students (i.e., students from economics and strategic communication disciplines) to solve a contemporary, complex, open-ended transportation engineering problem with social consequences. Social science students also received the opportunity to develop a better understanding of technical aspects in science and engineering. The open ended problem presented to the students was to “Restore and Improve Urban Infrastructure” in connection to the future deployment of connected and autonomous vehicles, which is identified as a grand challenge by the National Academy of Engineers (NAE) [1]. 
    more » « less