skip to main content


Title: An Information-Theoretic View of Mixed-Delay Traffic in 5G and 6G
Fifth generation mobile communication systems (5G) have to accommodate both Ultra-Reliable Low-Latency Communication (URLLC) and enhanced Mobile Broadband (eMBB) services. While eMBB applications support high data rates, URLLC services aim at guaranteeing low-latencies and high-reliabilities. eMBB and URLLC services are scheduled on the same frequency band, where the different latency requirements of the communications render their coexistence challenging. In this survey, we review, from an information theoretic perspective, coding schemes that simultaneously accommodate URLLC and eMBB transmissions and show that they outperform traditional scheduling approaches. Various communication scenarios are considered, including point-to-point channels, broadcast channels, interference networks, cellular models, and cloud radio access networks (C-RANs). The main focus is on the set of rate pairs that can simultaneously be achieved for URLLC and eMBB messages, which captures well the tension between the two types of communications. We also discuss finite-blocklength results where the measure of interest is the set of error probability pairs that can simultaneously be achieved in the two communication regimes.  more » « less
Award ID(s):
1908308
NSF-PAR ID:
10328109
Author(s) / Creator(s):
; ; ;  ; ;
Date Published:
Journal Name:
Entropy
Volume:
24
Issue:
5
ISSN:
1099-4300
Page Range / eLocation ID:
637
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Interactive mobile applications like web browsing and gaming are known to benefit significantly from low latency networking, as applications communicate with cloud servers and other users' devices. Emerging mobile channel standards have not met these needs: 5G's general-purpose eMBB channel has much higher bandwidth than 4G but empirically offers little improvement for common latency-sensitive applications, while its ultra-low-latency URLLC channel is targeted at only specific applications with very low bandwidth requirements. We explore a different direction for wireless channel design to address the fundamental bandwidth-latency tradeoff: utilizing two channels -- one high bandwidth, one low latency -- simultaneously to improve performance of common Internet applications. We design DChannel, a fine-grained packet-steering scheme that takes advantage of these parallel channels to transparently improve application performance. With 5G channels, our trace-driven and live network experiments show that even though URLLC offers just 1% of the bandwidth of eMBB, using both channels can improve web page load time and responsiveness of common mobile apps by 16-40% compared to using exclusively eMBB. This approach may provide service providers important incentives to make low latency channels available for widespread use. 
    more » « less
  2. Interactive mobile applications like web browsing and gaming are known to benefit significantly from low latency networking, as applications communicate with cloud servers and other users' devices. Emerging mobile channel standards have not met these needs: 5G's general-purpose eMBB channel has much higher bandwidth than 4G but empirically offers little improvement for common latency-sensitive applications, while its ultra-low-latency URLLC channel is targeted at only specific applications with very low bandwidth requirements. We explore a different direction for wireless channel design to address the fundamental bandwidth-latency tradeoff: utilizing two channels -- one high bandwidth, one low latency -- simultaneously to improve performance of common Internet applications. We design DChannel, a fine-grained packet-steering scheme that takes advantage of these parallel channels to transparently improve application performance. With 5G channels, our trace-driven and live network experiments show that even though URLLC offers just 1% of the bandwidth of eMBB, using both channels can improve web page load time and responsiveness of common mobile apps by 16-40% compared to using exclusively eMBB. This approach may provide service providers important incentives to make low latency channels available for widespread use. 
    more » « less
  3. Interactive mobile applications like web browsing and gaming are known to benefit significantly from low latency networking, as applications communicate with cloud servers and other users’ devices. Emerging mobile channel standards have not met these needs: general-purpose channels are greatly improving bandwidth but empirically offer little improvement for common latency-sensitive applications, and ultra-low-latency channels are targeted at only specific applications with very low bandwidth requirements. We explore a different direction for wireless channel design: utilizing two channels – one high bandwidth, one low latency – simultaneously for general-purpose applications. With a focus on web browsing, we design fine-grained traffic steering heuristics that can be implemented in a shim layer of the host network stack, effectively exploiting the high bandwidth and low latency properties of both channels. In the special case of 5G’s channels, our experiments show that even though URLLC offers just 0.2% of the bandwidth of eMBB, the use of both channels in parallel can reduce page load time by 26% to 59% compared to delivering traffic exclusively on eMBB. We believe this approach may benefit applications in addition to web browsing, may offer service providers incentives to deploy low latency channels, and suggests a direction for the design of future wireless channels. 
    more » « less
  4. Emerging 5G systems will need to efficiently support both enhanced mobile broadband traffic (eMBB) and ultra-low- latency communications (URLLC) traffic. In these systems, time is divided into slots which are further sub-divided into minislots. From a scheduling perspective, eMBB resource allocations occur at slot boundaries, whereas to reduce latency URLLC traffic is pre-emptively overlapped at the minislot timescale, resulting in selective superposition/puncturing of eMBB allocations. This approach enables minimal URLLC latency at a potential rate loss to eMBB traffic. We study joint eMBB and URLLC schedulers for such systems, with the dual objectives of maximizing utility for eMBB traffic while immediately satisfying URLLC demands. For a linear rate loss model (loss to eMBB is linear in the amount of URLLC superposition/puncturing), we derive an optimal joint scheduler. Somewhat counter-intuitively, our results show that our dual objectives can be met by an iterative gradient scheduler for eMBB traffic that anticipates the expected loss from URLLC traffic, along with an URLLC demand scheduler that is oblivious to eMBB channel states, utility functions and allocation decisions of the eMBB scheduler. Next we consider a more general class of (convex/threshold) loss models and study optimal online joint eMBB/URLLC schedulers within the broad class of channel state dependent but minislot-homogeneous policies. A key observation is that unlike the linear rate loss model, for the convex and threshold rate loss models, optimal eMBB and URLLC schedul- ing decisions do not de-couple and joint optimization is necessary to satisfy the dual objectives. We validate the characteristics and benefits of our schedulers via simulation. 
    more » « less
  5. Wireless networks are being applied in various industrial sectors, and they are posed to support mission-critical industrial IoT applications which require ultra-reliable, low-latency communications (URLLC). Ensuring predictable per-packet communication reliability is a basis of predictable URLLC, and scheduling and power control are two basic enablers. Scheduling and power control, however, are subject to challenges such as harsh environments, dynamic channels, and distributed network settings in industrial IoT. Existing solutions are mostly based on heuristic algorithms or asymptotic analysis of network performance, and there lack field-deployable algorithms for ensuring predictable per-packet reliability. Towards addressing the gap, we examine the cross-layer design of joint scheduling and power control and analyze the associated challenges. We introduce the Perron–Frobenius theorem to demonstrate that scheduling is a must for ensuring predictable communication reliability, and by investigating characteristics of interference matrices, we show that scheduling with close-by links silent effectively constructs a set of links whose required reliability is feasible with proper transmission power control. Given that scheduling alone is unable to ensure predictable communication reliability while ensuring high throughput and addressing fast-varying channel dynamics, we demonstrate how power control can help improve both the reliability at each time instant and throughput in the long-term. Based on the analysis, we propose a candidate framework of joint scheduling and power control, and we demonstrate how this framework behaves in guaranteeing per-packet communication reliability in the presence of wireless channel dynamics of different time scales. Collectively, these findings provide insight into the cross-layer design of joint scheduling and power control for ensuring predictable per-packet reliability in the presence of wireless network dynamics and uncertainties. 
    more » « less