skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: From the Heroic Age to today: What diatoms from Shackleton's Nimrod expedition can tell us about the ecological trajectory of Antarctic ponds
Award ID(s):
1637708
PAR ID:
10328258
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Limnology and Oceanography Letters
Volume:
6
Issue:
6
ISSN:
2378-2242
Page Range / eLocation ID:
379 to 387
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Citellinema Hall, 1918 includes 6 valid species of gastrointestinal nematodes of sciurids. Two species occur in the Palearctic and 4 in the Nearctic, 3 of which occur minimally across Colorado, Idaho and Oregon and 1, Citellinema bifurcatum , has a wide distribution across North America. Members of the genus are didelphic, possess a cephalic vesicle, a terminal spine-like process in females and feature robust spicules, consisting of a proximal end fused and semicylindrical shaft connected to a lamina supported by 2 terminal filiform processes. Typically, the size of the spicules is used to differentiate species. As part of the Beringian Coevolution Project, specimens provisionally identified as C. bifurcatum were collected through intensive field sampling of mammals and associated parasites from across localities spanning the Holarctic. These specimens revealed considerable genetic variability at both mitochondrial and nuclear loci, supporting the identification of deeply divergent clades. Examination of these new specimens, along with the holotypes of C. bifurcatum and Citellinema quadrivittati indicates that Citellinema monacis (previously synonymized with C . bifurcatum ) should be resurrected and 3 additional species described. We suggest that the apparent bifurcated nature of the spicule should be considered a generic diagnostic trait, while the proportional length of the lamina relative to that of the spicule is used as a specific character. We demonstrate the critical need for continued inventory of often poorly known assemblages of hosts and parasites, contributing to a growing baseline of archival specimens, collections and information that make explorations of faunal structure and diversity possible. 
    more » « less
  2. null (Ed.)
    Abstract— Fossil fruits of Symplocos (Ericales: Symplocaceae) are here recognized from the Pliocene of Guasca, Colombia, based on specimens formerly attributed to Cordia (Cordiaceae, Boraginales). Symplocos vera (Berry) comb. nov. is represented by 19 lignitized fruits. The fossils are recognized as belonging to Symplocos primarily by their woody endocarps that are apically truncate and that possess 3 to 5 apical germination pores and locules, and a central vascular canal extending the length of the endocarp. In several key characters they are highly congruent with the endocarps of the extant Neotropical clade S. ser. Symplocos . Some of the extant species in the series are variably 3- to 5-locular; 4-locular endocarps are otherwise rare in Symplocos , and 5-locular endocarps appear to be unique to this series. Symplocos vera is the only specifically named record of fossil Symplocos fruits with accessible voucher specimens from South America. The younger Neogene age of the fossils relative to those attributed to S. ser. Symplocos from the late Eocene of Texas, along with a report of Colombian fossil endocarps from the middle Miocene, supports the North America to South America migration inferred for this clade from molecular phylogenetic data. 
    more » « less
  3. null (Ed.)
    ABSTRACT Thermoacidophilic archaea belonging to the order Sulfolobales thrive in extreme biotopes, such as sulfuric hot springs and ore deposits. These microorganisms have been model systems for understanding life in extreme environments, as well as for probing the evolution of both molecular genetic processes and central metabolic pathways. Thermoacidophiles, such as the Sulfolobales, use typical microbial responses to persist in hot acid (e.g. motility, stress response, biofilm formation), albeit with some unusual twists. They also exhibit unique physiological features, including iron and sulfur chemolithoautotrophy, that differentiate them from much of the microbial world. Although first discovered >50 years ago, it was not until recently that genome sequence data and facile genetic tools have been developed for species in the Sulfolobales. These advances have not only opened up ways to further probe novel features of these microbes but also paved the way for their potential biotechnological applications. Discussed here are the nuances of the thermoacidophilic lifestyle of the Sulfolobales, including their evolutionary placement, cell biology, survival strategies, genetic tools, metabolic processes and physiological attributes together with how these characteristics make thermoacidophiles ideal platforms for specialized industrial processes. 
    more » « less
  4. Stewart, Frank J. (Ed.)
    ABSTRACT A nearly complete genome of an uncultured Mollicutes sp. was obtained from the metagenome of the gut of Limacina rangii (open-ocean snail), an important grazer and prey for higher trophic animals along the rapidly warming region of the western Antarctic Peninsula. 
    more » « less
  5. McMahon, Katherine (Ed.)
    ABSTRACT Photosynthetic Cyanobacteria and their descendants are the only known organisms capable of oxygenic photosynthesis. Their metabolism permanently changed the Earth’s surface and the evolutionary trajectory of life, but little is known about their evolutionary history. Genomes of the Gloeobacterales , an order of deeply divergent photosynthetic Cyanobacteria , may hold clues about the evolutionary process. However, there are only three published genomes within this order, and it is difficult to make broad inferences based on such little data. Here, I describe five species within the Gloeobacterales retrieved from publicly available databases and examine their photosynthetic gene content and the environments in which Gloeobacterales genomes and 16S rRNA gene sequences are found. The Gloeobacterales contain reduced photosystems and inhabit cold, wet-rock, and low-light environments. They are likely present in low abundances due to their low growth rate. Future searches for Gloeobacterales should target these environments, and samples should be deeply sequenced to capture the low-abundance taxa. Publicly available databases contain undescribed taxa within the Gloeobacterales . However, searching through all available data with current methods is computationally expensive. Therefore, new methods must be developed to search for these and other evolutionarily important taxa. Once identified, these novel photosynthetic Cyanobacteria will help illuminate the origin and evolution of oxygenic photosynthesis. IMPORTANCE Early branching photosynthetic Cyanobacteria such as the Gloeobacterales may provide clues into the evolutionary history of oxygenic photosynthesis, but there are few genomes or cultured taxa from this order. Five new metagenome-assembled genomes suggest that members of the Gloeobacterales all contain reduced photosystems and lack genes associated with thylakoids and circadian rhythms. Their distribution suggests that they may thrive in environments that are marginal for other species, including wet-rock and cold environments. These traits may aid in the discovery and cultivation of novel species in this clade. 
    more » « less