skip to main content


Title: Phagotrophic Protists and Their Associates: Evidence for Preferential Grazing in an Abiotically Driven Soil Ecosystem
The complex relationship between ecosystem function and soil food web structure is governed by species interactions, many of which remain unmapped. Phagotrophic protists structure soil food webs by grazing the microbiome, yet their involvement in intraguild competition, susceptibility to predator diversity, and grazing preferences are only vaguely known. These species-dependent interactions are contextualized by adjacent biotic and abiotic processes, and thus obfuscated by typically high soil biodiversity. Such questions may be investigated in the McMurdo Dry Valleys (MDV) of Antarctica because the physical environment strongly filters biodiversity and simplifies the influence of abiotic factors. To detect the potential interactions in the MDV, we analyzed the co-occurrence among shotgun metagenome sequences for associations suggestive of intraguild competition, predation, and preferential grazing. In order to control for confounding abiotic drivers, we tested co-occurrence patterns against various climatic and edaphic factors. Non-random co-occurrence between phagotrophic protists and other soil fauna was biotically driven, but we found no support for competition or predation. However, protists predominately associated with Proteobacteria and avoided Actinobacteria, suggesting grazing preferences were modulated by bacterial cell-wall structure and growth rate. Our study provides a critical starting-point for mapping protist interactions in native soils and highlights key trends for future targeted molecular and culture-based approaches.  more » « less
Award ID(s):
1637708
NSF-PAR ID:
10328272
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Microorganisms
Volume:
9
Issue:
8
ISSN:
2076-2607
Page Range / eLocation ID:
1555
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Microbial eukaryotes (or protists) in marine ecosystems are a link between primary producers and all higher trophic levels, and the rate at which heterotrophic protistan grazers consume microbial prey is a key mechanism for carbon transport and recycling in microbial food webs. At deep-sea hydrothermal vents, chemosynthetic bacteria and archaea form the base of a food web that functions in the absence of sunlight, but the role of protistan grazers in these highly productive ecosystems is largely unexplored. Here, we pair grazing experiments with a molecular survey to quantify protistan grazing and to characterize the composition of vent-associated protists in low-temperature diffuse venting fluids from Gorda Ridge in the northeast Pacific Ocean. Results reveal protists exert higher predation pressure at vents compared to the surrounding deep seawater environment and may account for consuming 28 to 62% of the daily stock of prokaryotic biomass within discharging hydrothermal vent fluids. The vent-associated protistan community was more species rich relative to the background deep sea, and patterns in the distribution and co-occurrence of vent microbes provide additional insights into potential predator–prey interactions. Ciliates, followed by dinoflagellates, Syndiniales, rhizaria, and stramenopiles, dominated the vent protistan community and included bacterivorous species, species known to host symbionts, and parasites. Our findings provide an estimate of protistan grazing pressure within hydrothermal vent food webs, highlighting the important role that diverse protistan communities play in deep-sea carbon cycling.

     
    more » « less
  2. Biotic interactions structure ecological communities but abiotic factors affect the strength of these relationships. These interactions are difficult to study in soils due to their vast biodiversity and the many environmental factors that affect soil species. The McMurdo Dry Valleys (MDV), Antarctica, are relatively simple soil ecosystems compared to temperate soils, making them an excellent study system for the trophic relationships of soil. Soil microbes and relatively few species of nematodes, rotifers, tardigrades, springtails, and mites are patchily distributed across the cold, dry landscape, which lacks vascular plants and terrestrial vertebrates. However, glacier and permafrost melt are expected to cause shifts in soil moisture and solutes across this ecosystem. To test how increased moisture and salinity affect soil invertebrates and their biotic interactions, we established a laboratory microcosm experiment (4 community × 2 moisture × 2 salinity treatments). Community treatments were: (1) Bacteria only (control), (2) Scottnema (S. lindsayae + bacteria), (3) Eudorylaimus (E. antarcticus + bacteria), and (4) Mixed (S. lindsayae + E. antarcticus + bacteria). Salinity and moisture treatments were control and high. High moisture reduced S. lindsayae adults, while high salinity reduced the total S. lindsayae population. We found that S. lindsayae exerted top-down control over soil bacteria populations, but this effect was dependent on salinity treatment. In the high salinity treatment, bacteria were released from top-down pressure as S. lindsayae declined. Ours was the first study to empirically demonstrate, although in lab microcosm conditions, top-down control in the MDV soil food web. 
    more » « less
  3. Understanding the role of species interactions within communities is a central focus of ecology. A key challenge is to understand variation in species interactions along environmental gradients. The stress gradient hypothesis posits that positive interactions increase and competitive interactions decrease with increasing consumer pressure or environmental stress. This hypothesis has received extensive attention in plant community ecology, but only a handful of tests in animals. Furthermore, few empirical studies have examined multiple co‐occurring stressors. Here we test predictions of the stress gradient hypothesis using the occurrence of mixed‐species groups in six common grazing ungulate species within the Serengeti‐Mara ecosystem. We use mixed‐species groups as a proxy for potential positive interactions because they may enhance protection from predators or increase access to high‐quality forage. Alternatively, competition for resources may limit the formation of mixed‐species groups. Using more than 115,000 camera trap observations collected over 5 yr, we found that mixed‐species groups were more likely to occur in risky areas (i.e., areas closer to lion vantage points and in woodland habitat where lions hunt preferentially) and during time periods when resource levels were high. These results are consistent with the interpretation that stress from high predation risk may contribute to the formation of mixed‐species groups, but that competition for resources may prevent their formation when food availability is low. Our results are consistent with support for the stress gradient hypothesis in animals along a consumer pressure gradient while identifying the potential influence of a co‐occurring stressor, thus providing a link between research in plant community ecology on the stress gradient hypothesis, and research in animal ecology on trade‐offs between foraging and risk in landscapes of fear. 
    more » « less
  4. Abstract Phagotrophic protists (formerly protozoa) are a highly diverse, polyphyletic grouping of generally unicellular, heterotrophic eukaryotes that are key regulators of the soil microbiome. The biodiversity and ecology of soil phagotrophic protists are still largely uncharacterized, especially in the Antarctic, which possesses some of the harshest terrestrial environments known and potentially many physiologically unique and scientifically interesting species. Antarctic soil systems are also highly limited in terms of moisture, temperature, and carbon, and the resulting reduced biological complexity can facilitate fine-tuned investigation of the drivers and functioning of microbial communities. To facilitate and encourage future research into protist biodiversity and ecology, especially in context of the broader functioning of Antarctic terrestrial communities, I review the biodiversity, distribution, and ecology of Antarctic soil phagotrophic protists. Biodiversity appears to be highly structured by region and taxonomic group, with the Antarctic Peninsula having the highest taxonomic diversity and ciliates (Ciliophora) being the most diverse taxonomic group. However, richness estimates are likely skewed by disproportionate sampling (over half of the studies are from the peninsula), habitat type bias (predominately moss-associated soils), investigator bias (toward ciliates and the testate amoeba morphogroup), and methodological approach (toward cultivation and morphological identification). To remedy these biases, a standardized methodology using both morphological and molecular identification and increased emphasis on microflagellate and naked amoeba morphogroups is needed. Additionally, future research should transition away from biodiversity survey studies to dedicated ecological studies that emphasize the function, ecophysiology, endemicity, dispersal, and impact of abiotic drivers beyond moisture and temperature. 
    more » « less
  5. Abstract

    We investigated competition betweenSalpa thompsoniand protistan grazers during Lagrangian experiments near the Subtropical Front in the southwest Pacific sector of the Southern Ocean. Over a month, the salp community shifted from dominance by large (> 100 mm) oozooids and small (< 20 mm) blastozooids to large (~ 60 mm) blastozooids. Phytoplankton biomass was consistently dominated by nano‐ and microphytoplankton (> 2 μm cells). Using bead‐calibrated flow‐cytometry light scatter to estimate phytoplankton size, we quantified size‐specific salp and protistan zooplankton grazing pressure. Salps were able to feed at a > 10,000 : 1 predator : prey size (linear‐dimension) ratio. Small blastozooids efficiently retained cells > 1.4μm (high end of picoplankton size, 0.6–2 μm cells) and also obtained substantial nutrition from smaller bacteria‐sized cells. Larger salps could only feed efficiently on > 5.9μm cells and were largely incapable of feeding on picoplankton. Due to the high biomass of nano‐ and microphytoplankton, however, all salps derived most of their (phytoplankton‐based) nutrition from these larger autotrophs. Phagotrophic protists were the dominant competitors for these prey items and consumed approximately 50% of the biomass of all phytoplankton size classes each day. Using a Bayesian statistical framework, we developed an allometric‐scaling equation for salp clearance rates as a function of salp and prey size:urn:x-wiley:00243590:media:lno11770:lno11770-math-0001where ESD is prey equivalent spherical diameter (µm), TL isS. thompsonitotal length,φ = 5.6 × 10−3 ± 3.6 × 10−4,ψ = 2.1 ± 0.13,θ = 0.58 ± 0.08, andγ = 0.46 ± 0.03 and clearance rate is L d‐1salp‐1. We discuss the biogeochemical and food‐web implications of competitive interactions among salps, krill, and protozoans.

     
    more » « less