Few-shot machine learning attempts to predict outputs given only a very small number of training examples. The key idea behind most few-shot learning approaches is to pre-train the model with a large number of instances from a different but related class of data, classes for which a large number of instances are available for training. Few-shot learning has been most successfully demonstrated for classification problems using Siamese deep learning neural networks. Few-shot learning is less extensively applied to time-series forecasting. Few-shot forecasting is the task of predicting future values of a time-series even when only a small set of historic time-series is available. Few-shot forecasting has applications in domains where a long history of data is not available. This work describes deep neural network architectures for few-shot forecasting. All the architectures use a Siamese twin network approach to learn a difference function between pairs of time-series, rather than directly forecasting based on historical data as seen in traditional forecasting models. The networks are built using Long short-term memory units (LSTM). During forecasting, a model is able to forecast time-series types that were never seen in the training data by using the few available instances of the new time-series type as reference inputs. The proposed architectures are evaluated on Vehicular traffic data collected in California from the Caltrans Performance Measurement System (PeMS). The models were trained with traffic flow data collected at specific locations and then are evaluated by predicting traffic at different locations at different time horizons (0 to 12 hours). The Mean Absolute Error (MAE) was used as the evaluation metric and also as the loss function for training. The proposed architectures show lower prediction error than a baseline nearest neighbor forecast model. The prediction error increases at longer time horizons.
more »
« less
Revisiting the Ground Magnetic Field Perturbations Challenge: A Machine Learning Perspective
Forecasting ground magnetic field perturbations has been a long-standing goal of the space weather community. The availability of ground magnetic field data and its potential to be used in geomagnetically induced current studies, such as risk assessment, have resulted in several forecasting efforts over the past few decades. One particular community effort was the Geospace Environment Modeling (GEM) challenge of ground magnetic field perturbations that evaluated the predictive capacity of several empirical and first principles models at both mid- and high-latitudes in order to choose an operative model. In this work, we use three different deep learning models-a feed-forward neural network, a long short-term memory recurrent network and a convolutional neural network-to forecast the horizontal component of the ground magnetic field rate of change ( dB H / dt ) over 6 different ground magnetometer stations and to compare as directly as possible with the original GEM challenge. We find that, in general, the models are able to perform at similar levels to those obtained in the original challenge, although the performance depends heavily on the particular storm being evaluated. We then discuss the limitations of such a comparison on the basis that the original challenge was not designed with machine learning algorithms in mind.
more »
« less
- Award ID(s):
- 2117932
- PAR ID:
- 10328291
- Date Published:
- Journal Name:
- Frontiers in Astronomy and Space Sciences
- Volume:
- 9
- ISSN:
- 2296-987X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract In this research, we present data‐driven forecasting of ionospheric total electron content (TEC) using the Long‐Short Term Memory (LSTM) deep recurrent neural network method. The random forest machine learning method was used to perform a regression analysis and estimate the variable importance of the input parameters. The input data are obtained from satellite and ground based measurements characterizing the solar‐terrestrial environment. We estimate the relative importance of 34 different parameters, including the solar flux, solar wind density, and speed the three components of interplanetary magnetic field, Lyman‐alpha, the Kp, Dst, and Polar Cap (PC) indices. The TEC measurements are taken with 15‐s cadence from an equatorial GPS station located at Bogota, Columbia (4.7110° N, 74.0721° W). The 2008–2017 data set, including the top five parameters estimated using the random forest, is used for training the machine learning models, and the 2018 data set is used for independent testing of the LSTM forecasting. The LSTM method as applied to forecast the TEC up to 5 h ahead, with 30‐min cadence. The results indicate that very good forecasts with low root mean square (RMS) error (high correlation) can be made in the near future and the RMS errors increase as we forecast further into the future. The data sources are satellite and ground based measurements characterizing the solar‐terrestrial environment.more » « less
-
Deep learning has been applied in precision oncology to address a variety of gene expression-based phenotype predictions. However, gene expression data’s unique characteristics challenge the computer vision-inspired design of popular Deep Learning (DL) models such as Convolutional Neural Network (CNN) and ask for the need to develop interpretable DL models tailored for transcriptomics study. To address the current challenges in developing an interpretable DL model for modeling gene expression data, we propose a novel interpretable deep learning architecture called T-GEM, or Transformer for Gene Expression Modeling. We provided the detailed T-GEM model for modeling gene–gene interactions and demonstrated its utility for gene expression-based predictions of cancer-related phenotypes, including cancer type prediction and immune cell type classification. We carefully analyzed the learning mechanism of T-GEM and showed that the first layer has broader attention while higher layers focus more on phenotype-related genes. We also showed that T-GEM’s self-attention could capture important biological functions associated with the predicted phenotypes. We further devised a method to extract the regulatory network that T-GEM learns by exploiting the attributions of self-attention weights for classifications and showed that the network hub genes were likely markers for the predicted phenotypes.more » « less
-
Machine Learning (ML) algorithms have shown quite promising applications in smart meter data analytics enabling intelligent energy management systems for the Advanced Metering Infrastructure (AMI). One of the major challenges in developing ML applications for the AMI is to preserve user privacy while allowing active end-users participation. This paper addresses this challenge and proposes Differential Privacy-enabled AMI with Federated Learning (DP-AMI-FL), framework for ML-based applications in the AMI. This framework provides two layers of privacy protection: first, it keeps the raw data of consumers hosting ML applications at edge devices (smart meters) with Federated Learning (FL), and second, it obfuscates the ML models using Differential Privacy (DP) to avoid privacy leakage threats on the models posed by various inference attacks. The framework is evaluated by analyzing its performance on a use case aimed to improve Short-Term Load Forecasting (STLF) for residential consumers having smart meters and home energy management systems. Extensive experiments demonstrate that the framework when used with Long Short-Term Memory (LSTM) recurrent neural network models, achieves high forecasting accuracy while preserving users data privacy.more » « less
-
Solar power is a critical source of renewable energy, offering significant potential to lower greenhouse gas emissions and mitigate climate change. However, the cloud induced-variability of solar radiation reaching the earth’s surface presents a challenge for integrating solar power into the grid (e.g., storage and backup management). The new generation of geostationary satellites such as GOES-16 has become an important data source for large-scale and high temporal frequency solar radiation forecasting. However, no machine-learning-ready dataset has integrated geostationary satellite data with fine-grained solar radiation information to support forecasting model development and benchmarking with consistent metrics. We present SolarCube, a new ML-ready benchmark dataset for solar radiation forecasting. SolarCube covers 19 study areas distributed over multiple continents: North America, South America, Asia, and Oceania. The dataset supports short (i.e., 30 minutes to 6 hours) and long-term (i.e., day-ahead or longer) solar radiation forecasting at both point-level (i.e., specific locations of monitoring stations) and area-level, by processing and integrating data from multiple sources, including geostationary satellite images, physics-derived solar radiation, and ground station observations from different monitoring networks over the globe. We also evaluated a set of forecasting models for point- and image-based time-series data to develop performance benchmarks under different testing scenarios. The dataset is available at https://doi.org/10.5281/zenodo.11498739. A Python library is available to conveniently generate different variations of the dataset based on user needs, along with baseline models at https://github.com/Ruohan-Li/SolarCube.more » « less
An official website of the United States government

