skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Lyotropic liquid crystals as templates for advanced materials
Lyotropic liquid crystals (LLCs) have drawn attention in numerous technical fields as they feature a variety of nanometer-scale structures, processability, and diverse chemical functionality. However, they suffer from poor mechanical properties and thermal stability. Polymerization in LLCs, referred to as LLC templating, is an effective approach to overcome this issue. While the templating approach results in robust mechanical, physical, and thermal properties, retention of the parent LLC structure after polymerization has been a major concern in the field. Therefore, there have been several efforts to introduce new materials and techniques to preserve the native LLC nanostructure after polymerization. In this review, we survey the efforts put in this area along with the applications of the obtained materials from LLC templating, after providing a brief introduction of LLC structures. Moreover, polymerization kinetics in different LLC structures, as a key player in the structure retention, are analyzed. Furthermore, we discuss the outlook of the field and available opportunities.  more » « less
Award ID(s):
2212894
PAR ID:
10328330
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Materials Chemistry A
Volume:
9
Issue:
38
ISSN:
2050-7488
Page Range / eLocation ID:
21607 to 21658
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    In this study, we examine the polymerization kinetics with different thermal initiators in lamellar and hexagonal lyotropic liquid crystal (LLC) structures directed by Pluronic L64. Ammonium persulfate is used to initiate the polymerization from the water phase, whereas azobisisobutyronitrile and benzoyl peroxide are employed to commence the reaction through the monomer phase. While the mesophase structure remains intact for all the initiation systems, the kinetics of polymerization and conversion vary significantly. The obtained differential scanning calorimetry (DSC) results reveal that, under the same conditions, the initiation from water (IFW) system results in enhanced reaction rates as well as higher monomer conversions compared to the initiation from oil (IFO) system. A higher termination rate in LLC nanoconfinements induces lower reaction rates in the IFO system. Moreover, our work on different LLC structures shows that the effect of nanoconfinement on the polymerization rate can be minimized through IFW. Chemorheology not only confirms the results obtained from DSC, but also shows that, in similar monomer conversions, the polymers obtained from the IFW system exhibit improved mechanical properties over the samples produced through the IFO process. 
    more » « less
  2. Abstract Advanced templating techniques have enabled delicate control of both nano‐ and microscale structures and have helped thrust functional materials into the forefront of society. Cellulose nanomaterials are derived from natural polymers and show promise as a templating source for advanced materials. Use of cellulose nanomaterials in templating combines nanoscale property control with sustainability, an attribute often lacking in other templating techniques. Use of cellulose nanofibers for templating has shown great promise in recent years, but previous reviews on cellulose nanomaterial templating techniques have not provided extensive analysis of cellulose nanofiber templating. Cellulose nanofibers display several unique properties, including mechanical strength, porosity, high water retention, high surface functionality, and an entangled fibrous network, all of which can dictate distinctive aspects in the final templated materials. Many applications exploit the unique aspects of templating with cellulose nanofibers that help control the final properties of the material, including, but not limited to, applications in catalysis, batteries, supercapacitors, electrodes, building materials, biomaterials, and membranes. A detailed analysis on the use of cellulose nanofibers templating is provided, addressing specifically how careful selection of templating mechanisms and methodologies, combined toward goal applications, can be used to directly benefit chosen applications in advanced functional materials. 
    more » « less
  3. Lattice materials provide unusual thermal and vibrational properties but not within the same structure. Thermal and vibrational multifunctionality is, however, crucial for thermomechanical applications such as automotive, aerospace, building, transportation, and energy infrastructure. In applications involving mobility, both high heat transfer and low mass are desired. Although there have been various efforts to design multifunctional lattice materials, the focus has largely remained on quasi‐static mechanical and thermal properties or mechanical and vibrational properties. Herein, designs of realizable lattice materials are reported, which are inherently thermally resistive, with vastly improved thermal conductance and omnidirectional phononic band gaps. By redesigning the truss structures to serve as interconnected heat pipes, a three‐order‐of‐magnitude improvement in the specific thermal conductance is found. Nodal masses at truss junctions are further used to obtain full vibrational band gaps. It is shown that it is possible to independently tune vibrational and thermal properties within the same structure. This work provides background for the design and fabrication of multifunctional lattice materials that simultaneously prevent structural vibrations and enhance heat conduction. 
    more » « less
  4. Abstract Fish scales inspired materials platform can provide advanced mechanical properties and functionalities. These materials, inspired from fish scales take the form of either composite materials or multi-material discrete exoskeleton type structures. Over the last decade, they have been under intense scrutiny for generating tailorable and tunable stiffness, penetration and fracture resistance, buckling prevention, nonlinear damping, hydrodynamic and camouflaging functions. Such programmable behavior emerges from leveraging their unique morphology and structure-property relationships. Several advanced tools of characterization, manufacturing, modeling and computation have been employed to understand and discover their behavior. With the rapid proliferation of additive manufacturing (AM) techniques, and advancing envelope of modeling and computational methods, this field is seeing renewed efforts to realize even more ambitious designs. We present a review and recapitulation of the state-of-the art in fish scale inspired materials in this paper. 
    more » « less
  5. Photopolymerizable semicrystalline thermoplastics resulting from thiol–ene polymerizations were formed via fast polymerizations and achieved excellent mechanical properties. These materials have been shown to produce materials desirable for additive manufacturing (3D printing), especially for recyclable printing and investment casting. However, while well-resolved prints were previously achieved with the thiol–ene thermoplastics, the remarkable elongation at break ( ε max ) and toughness ( T ) attained in bulk were not realized for 3D printed components ( ε max,bulk ∼ 790%, T bulk ∼ 102 MJ m −3 vs. ε max,print < 5%, T print < 0.5 MJ m −3 ). In this work, small concentrations (5–10 mol%) of a crosslinker were added to the original thiol–ene resin composition without sacrificing crystallization potential to achieve semicrystalline, covalently crosslinked networks with enhanced mechanical properties. Improvements in ductility and overall toughness were observed for printed crosslinked structures, and substantial mechanical augmentation was further demonstrated with post-manufacture thermal conditioning of printed materials above the melting temperature ( T m ). In some instances, this thermal conditioning to reset the crystalline component of the crosslinked prints yielded mechanical properties that were comparable or superior to its bulk counterpart ( ε max ∼ 790%, T ∼ 95 MJ m −3 ). These unique photopolymerizations and their corresponding monomer compositions exhibited concurrent polymerization and crystallization along with mechanical properties that were tunable by changes to the monomer composition, photopolymerization conditions, and post-polymerization conditioning. This is the first example of a 3D printed semicrystalline, crosslinked material with thermally tunable mechanical properties that are superior to many commercially-available resins. 
    more » « less