skip to main content

Title: Expanding the conservation genomics toolbox: Incorporating structural variants to enhance genomic studies for species of conservation concern
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Molecular Ecology
Page Range / eLocation ID:
5949 to 5965
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Libermann, Bruce (Ed.)
    As a species, we have reached a tipping point for Earth derived from our unsustainable resource use. While conservation efforts occurred early in human civilization, it was not until 1980 that the full force of environmental destruction, including the Santa Barbara oil spill in the 1970s, culminated in the new discipline of conservation biology focused on the biosphere. Similarly, conservation paleobiology, named two decades later, brings the unique perspective of the fossil record to conservation efforts, uniting biosphere and geosphere scientists. To date, conservation history does not include paleontological or geological perspectives. Further, each discipline has a different benchmark—near time—for when Earth’s ecosystems were modified by humans. Accordingly, the history of conservation efforts leading up to conservation biology and conservation paleobiology was examined from a geological and ecological framework. To provide a benchmark for near time, the hominin record and their geo-environmental modifications were also examined and revealed that by the start of the Holocene, all continents except ice-covered Antarctica and Greenland had human-modified ecosystems. Therefore, near time is dispensable when the Holocene Epoch is universally understood and precisely defined as a time when H. sapiens dominated environments. Lastly, a conservation corps is urgently needed, following the long tradition of F.D. R.’s Civilian Conservation Corps of the 1930s and J.F. Kennedy’s Peace Corps of the 1960s, to promote a global network connecting all students and practitioners of conservation disciplines to focus on biotic resilience, recovery, and solutions for the world’s most pressing environmental problems. 
    more » « less
  2. Haddon, Lindsay (Ed.)
    Abstract Environmental change and biodiversity loss are but two of the complex challenges facing conservation practitioners and policy makers. Relevant and robust scientific knowledge is critical for providing decision-makers with the actionable evidence needed to inform conservation decisions. In the Anthropocene, science that leads to meaningful improvements in biodiversity conservation, restoration and management is desperately needed. Conservation Physiology has emerged as a discipline that is well-positioned to identify the mechanisms underpinning population declines, predict responses to environmental change and test different in situ and ex situ conservation interventions for diverse taxa and ecosystems. Here we present a consensus list of 10 priority research themes. Within each theme we identify specific research questions (100 in total), answers to which will address conservation problems and should improve the management of biological resources. The themes frame a set of research questions related to the following: (i) adaptation and phenotypic plasticity; (ii) human–induced environmental change; (iii) human–wildlife interactions; (iv) invasive species; (v) methods, biomarkers and monitoring; (vi) policy, engagement and communication; (vii) pollution; (viii) restoration actions; (ix) threatened species; and (x) urban systems. The themes and questions will hopefully guide and inspire researchers while also helping to demonstrate to practitioners and policy makers the many ways in which physiology can help to support their decisions. 
    more » « less