skip to main content


Title: Instructional Design, Situational Interest, and User Experience: Applications of Learning Experience Design to Promote Children’s Online Engagement. In de Vries, E., Hod, Y., & Ahn, J. (Eds.), Proceedings of the 15th International Conference of the Learning Sciences - ICLS 2021. (pp. 521-524). Bochum, Germany: International Society of the Learning Sciences.
Historically, learning for young students has occurred in formal, in-person classroom environments. But in just a matter of weeks, children were mandated to transition to a completely new mode of learning, facing new learning challenges with heightened anxieties. To this end, we aim to better understand how our learning experience design (LXD) efforts support or hinder children’s engagement while participating in an online, video-based math course. This study operationalized LXD through the integration of e-learning instructional design (ID) as a lever for promoting students’ situational interest (SI), emphasis on human-centered design to support students’ user experience (UX), and the combination of SI and UX to foster student engagement in an online environment. Results provide practical implications for how we can intentionally iterate our designs to sustain children’s online engagement as we prepare for future instances of traditional, online and even hybrid models of instruction.  more » « less
Award ID(s):
2027447
NSF-PAR ID:
10328498
Author(s) / Creator(s):
Editor(s):
de Vries, E.
Date Published:
Journal Name:
Proceedings of the 15th International Conference of the Learning Sciences - ICLS 2021.
Page Range / eLocation ID:
521-524
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Traditionally, learning among young students has taken place within structured, physical classroom settings. However, the emergence of distance learning has introduced a diverse range of learning methods, including online, hybrid, and blended approaches. When the COVID-19 pandemic led to extended delays in in-person instruction, use of educational technologies such as asynchronous videos and online platforms were deployed to deliver mathematics curricula aligned with the Common Core State Standards (CCSS), though best practices for teaching mathematics asynchronously are not well studied. This study focuses on exploring the effectiveness of a math course on proportional reasoning that was co-designed, developed, and deployed in 5th and 6th grade Orange County classrooms. Examining the learning experience design (LXD) paradigm, this research focuses on discerning its influence on (n = 303) children's engagement during their involvement in an online, video-based math course. LXD is implemented by combining evidence-based pedagogical instructional design with human-centered user experience (UX) design. The study utilized a structural equation model to analyze the relationships between learners' user experiences, situational interest, mind-wandering, and online engagement. The results demonstrated significant direct effects between students' situational interest, user experience, and their level of online engagement. Findings also indicate that students' situational interest and mind-wandering significantly mediate the relationship between their user experiences and online engagement. These results have important theoretical and practical implications for researchers, designers, and instructors. By combining evidenced-based pedagogical learning design with human-centered user experience design, LX designers can promote situational interest, reduce mind-wandering, and increase engagement in elementary mathematics courses conducted in asynchronous online settings.

     
    more » « less
  2. This article describes the design, development, and evaluation of an undergraduate learning module that builds students’ skills on how data analysis and numerical modeling can be used to analyze and design water resources engineering projects. The module follows a project-based approach by using a hydrologic restoration project in a coastal basin in south Louisiana, USA. The module has two main phases, a feasibility analysis phase and a hydraulic design phase, and follows an active learning approach where students perform a set of quantitative learning activities that involve extensive data and modeling analyses. The module is designed using open resources, including online datasets, hydraulic simulation models and geographical information system software that are typically used by the engineering industry and research communities. Upon completing the module, students develop skills that involve model formulation, parameter calibration, sensitivity analysis, and the use of data and models to assess and design a hydrologic a proposed hydrologic engineering project. Guided by design-based research framework, the implementation and evaluation of the module focused primarily on assessing students’ perceptions of the module usability and its design attributes, their perceived contribution of the module to their learning, and their overall receptiveness of the module and how it impacts their interest in the subject and future careers. Following an improvement-focused evaluation approach, design attributes that were found most critical to students included the use of user-support resources and self-checking mechanisms. These aspects were identified as key features that facilitate students’ self-learning and independent completion of tasks, while still enriching their learning experiences when using data and modeling-rich applications. Evaluation data showed that the following attributes contributed the most to students’ learning and potential value for future careers: application of modern engineering data analysis; use of real-world hydrologic datasets; and appreciation of uncertainties and challenges imposed by data scarcity. The evaluation results were used to formulate a set of guiding principles on how to design effective and conducive undergraduate learning experiences that adopt technology-enhanced and data and modeling- based strategies, on how to enhance users’ experiences with free and open-source engineering analysis tools, and on how to strike a pedagogical balance between module complexity, student engagement, and flexibility to fit within existing curricula limitations. 
    more » « less
  3. As K-12 engineering education becomes more ubiquitous in the U.S, increased attention has been paid to preparing the heterogeneous group of in-service teachers who have taken on the challenge of teaching engineering. Standards have emerged for professional development along with research on teacher learning in engineering that call for teachers to facilitate and support engineering learning environments. Given that many teachers may not have experienced engineering practice calls have been made to engage teaches K-12 teachers in the “doing” of engineering as part of their preparation. However, there is a need for research studying more specific nature of the “doing” and the instructional implications for engaging teachers in “doing” engineering. In general, to date, limited time and constrained resources necessitate that many professional development programs for K-12 teachers to engage participants in the same engineering activities they will enact with their students. While this approach supports teachers’ familiarity with curriculum and ability to anticipate students’ ideas, there is reason to believe that these experiences may not be authentic enough to support teachers in developing a rich understanding of the “doing” of engineering. K-12 teachers are often familiar with the materials and curricular solutions, given their experiences as adults, which means that engaging in the same tasks as their students may not be challenging enough to develop their understandings about engineering. This can then be consequential for their pedagogy: In our prior work, we found that teachers’ linear conceptions of the engineering design process can limit them from recognizing and supporting student engagement in productive design practices. Research on the development of engineering design practices with adults in undergraduate and professional engineering settings has shown significant differences in how adults approach and understand problems. Therefore, we conjectured that engaging teachers in more rigorous engineering challenges designed for adult engineering novices would more readily support their developing rich understandings of the ways in which professional engineers move through the design process. We term this approach meaningful engineering for teachers, and it is informed by work in science education that highlights the importance of learning environments creating a need for learners to develop and engage in disciplinary practices. We explored this approach to teachers’ professional learning experiences in doing engineering in an online graduate program for in-service teachers in engineering education at Tufts University entitled the Teacher Engineering Education Program (teep.tufts.edu). In this exploratory study, we asked: 1. How did teachers respond to engaging in meaningful engineering for teachers in the TEEP program? 2. What did teachers identify as important things they learned about engineering content and pedagogy? This paper focuses on one theme that emerged from teachers’ reflections. Our analysis found that teachers reported that meaningful engineering supported their development of epistemic empathy (“the act of understanding and appreciating someone's cognitive and emotional experience within an epistemic activity”) as a result of their own affective experiences in doing engineering that required significant iteration as well as using novel robotic materials. We consider how epistemic empathy may be an important aspect of teacher learning in K-12 engineering education and the potential implications for designing engineering teacher education. 
    more » « less
  4. Abstract

    Human‐centered, active‐learning approaches can help students develop core competencies in biology and other STEM fields, including the ability to conduct research, use quantitative reasoning, communicate across disciplinary boundaries, and connect science education to pressing social and environmental challenges. Promising approaches for incorporating active learning into biology courses include the use of course‐based research, community engagement, and international experiences. Disruption to higher education due to the COVID‐19 pandemic made each of these approaches more challenging or impossible to execute. Here, we describe a scalable course‐based undergraduate research experience (CURE) for an animal behavior course that integrates research and community engagement in a remote international experience. Students in courses at two U.S. universities worked with community partners to analyze the behavior of African goats grazing near informal settlements in Western Cape, South Africa. Partners established a relationship with goat herders, and then created 2‐min videos of individual goats that differed in criteria (goat sex and time of day) specified by students. Students worked in small groups to choose dependent variables, and then compared goat behavior across criteria using a factorial design. In postcourse surveys, students from both universities indicated overall enthusiasm for the experience. In general, students indicated that the laboratory provided them with “somewhat more” of a research‐based experience compared with biology laboratories they had taken of similar length, and “somewhat more” to “much more” of a community‐engagement and international experience. Educational benefits were complemented by the fact that international educational partners facing economic hardship due to the pandemic received payment for services. Future iterations of the CURE can focus on goat behavior differences across ecological conditions to help herders increase production in the face of continued environmental and social challenges. More generally, applying the structure of this CURE could facilitate mutually beneficial collaborations with residents of under‐resourced areas around the world.

     
    more » « less
  5. Abstract

    We investigated how families experienced immersion as they collaboratively made sense of geologic time and geoscience processes during a place-based, learning-on-the-move (LOTM) experience mediated by a mobile augmented reality (MAR) app. Our team developed an MAR app,Time Explorers, that focused on how rock-water interactions shaped Appalachia over millions of years. Data were collected at the Children’s Garden at the Arboretum at Penn State. Data sources were videos of app usage, point-of-view camera recordings with audio capturing family conversations, and interviews from 17 families (51 people). The analytical technique was interaction analysis, in which episodes of family sense-making were identified and developed into qualitative vignettes focused on how immersion did or did not support learning about geoscience and geologic time. We analyzed how design elements supported sensory, actional, narrative, and social immersion through photo-taking, discussion prompts, and augmented reality visualizations. Findings showed that sensory and social immersion supported sense-making conversations and observational inquiry, while narrative and actional immersion supported deep family engagement with the geoscience content. At many micro-sites of learning, families engaged in multiple immersive processes where conversations, observational inquiry, and deep engagement with the geoscience came together during LOTM. This analysis contributes to the CSCL literature on theory related to LOTM in outdoor informal settings, while also providing design conjectures in an immersive, family-centered, place-based LOTM framework.

     
    more » « less