- Award ID(s):
- 1704788
- NSF-PAR ID:
- 10328578
- Date Published:
- Journal Name:
- PLDI 2021
- Page Range / eLocation ID:
- 740 to 755
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Modern programmable network switches can implement cus- tom applications using efficient packet processing hardware, and the programming language P4 provides high-level con- structs to program such switches. The increase in speed and programmability has inspired research in dataplane program- ming, where many complex functionalities, e.g., key-value stores and load balancers, can be implemented entirely in network switches. However, dataplane programs may suffer from novel security errors that are not traditionally found in network switches. To address this issue, we present a new information-flow control type system for P4. We formalize our type system in a recently-proposed core version of P4, and we prove a sound- ness theorem: well-typed programs satisfy non-interference. We also implement our type system in a tool, P4BID, which extends the type checker in the p4c compiler, the reference compiler for the latest version of P4. We present several case studies showing that natural security, integrity, and isolation properties in networks can be captured by non-interference, and our type system can detect violations of these properties while certifying correct programs.more » « less
-
Most programs compiled to WebAssembly (Wasm) today are written in unsafe languages like C and C++. Unfortunately, memory-unsafe C code remains unsafe when compiled to Wasm—and attackers can exploit buffer overflows and use-after-frees in Wasm almost as easily as they can on native platforms. Memory- Safe WebAssembly (MSWasm) proposes to extend Wasm with language-level memory-safety abstractions to precisely address this problem. In this paper, we build on the original MSWasm position paper to realize this vision. We give a precise and formal semantics of MSWasm, and prove that well-typed MSWasm programs are, by construction, robustly memory safe. To this end, we develop a novel, language-independent memory-safety property based on colored memory locations and pointers. This property also lets us reason about the security guarantees of a formal C-to-MSWasm compiler—and prove that it always produces memory-safe programs (and preserves the semantics of safe programs). We use these formal results to then guide several implementations: Two compilers of MSWasm to native code, and a C-to-MSWasm compiler (that extends Clang). Our MSWasm compilers support different enforcement mechanisms, allowing developers to make security-performance trade-offs according to their needs. Our evaluation shows that on the PolyBenchC suite, the overhead of enforcing memory safety in software ranges from 22% (enforcing spatial safety alone) to 198% (enforcing full memory safety), and 51.7% when using hardware memory capabilities for spatial safety and pointer integrity. More importantly, MSWasm’s design makes it easy to swap between enforcement mechanisms; as fast (especially hardware-based) enforcement techniques become available, MSWasm will be able to take advantage of these advances almost for free.more » « less
-
null (Ed.)Security specification mining is a relatively new line of research that aims to develop a set of security properties for use during the design validation phase of the hardware life-cycle. Prior work in this field has targeted open-source RISC architectures and relies on access to the register transfer level design, developers’ repositories, bug tracker databases, and email archives. We develop Astarte, a tool for security specification mining of closed source, CISC architectures. As with prior work, we target properties written at the instruction set architecture (ISA) level. We use a full-system fast emulator with a lightweight extension to generate trace data, and we partition the space of security properties on security-critical signals in the architecture to manage complexity. We evaluate the approach for the x86-64 ISA. The Astarte framework produces roughly 1300 properties. Our automated approach produces a categorization that aligns with prior manual efforts. We study two known security flaws in shipped x86/x86-64 processor implementations and show that our set of properties could have revealed the flaws. Our analysis provides insight into those properties that are guaranteed by the ISA, those that are required of the operating system, and those that have become de facto properties by virtue of many operating systems assuming the behavior.more » « less
-
Calzavara, Stefano ; Naumann, David (Ed.)
Availability is crucial to the security of distributed systems, but guaranteeing availability is hard, especially when participants in the system may act maliciously. Quorum replication protocols provide both integrity and availability: data and computation is replicated at multiple independent hosts, and a quorum of these hosts must agree on the output of all operations applied to the data. Unfortunately, these protocols have high overhead and can be difficult to calibrate for a specific application’s needs. Ideally, developers could use high-level abstractions for consensus and replication to write fault-tolerant code that is secure by construction. This paper presents Flow-Limited Authorization for Quorum Replication (FLAQR), a core calculus for building distributed applications with heterogeneous quorum replication protocols while enforcing end-to-end information security. Our type system ensures that well-typed FLAQR programs cannot fail (experience an unrecoverable error) in ways that violate their type-level specifications. We present noninterference theorems that characterize FLAQR’s confidentiality, integrity, and availability in the presence of consensus, replication, and failures, as well as a liveness theorem for the class of majority quorum protocols under a bounded number of faults. Additionally, we present an extension to FLAQR that supports secret sharing as a form of declassification and prove it preserves integrity and availability security properties.
-
null (Ed.)Computer-aided cryptography is an active area of research that develops and applies formal, machine-checkable approaches to the design, analysis, and implementation of cryptography. We present a cross-cutting systematization of the computer-aided cryptography literature, focusing on three main areas: (i) design-level security (both symbolic security and computational security), (ii) functional correctness and efficiency, and (iii) implementation-level security (with a focus on digital side-channel resistance). In each area, we first clarify the role of computer-aided cryptography---how it can help and what the caveats are---in addressing current challenges. We next present a taxonomy of state-of-the-art tools, comparing their accuracy, scope, trustworthiness, and usability. Then, we highlight their main achievements, trade-offs, and research challenges. After covering the three main areas, we present two case studies. First, we study efforts in combining tools focused on different areas to consolidate the guarantees they can provide. Second, we distill the lessons learned from the computer-aided cryptography community's involvement in the TLS 1.3 standardization effort. Finally, we conclude with recommendations to paper authors, tool developers, and standardization bodies moving forward.more » « less