skip to main content

Title: Many, but not all, lineage-specific genes can be explained by homology detection failure
Genes for which homologs can be detected only in a limited group of evolutionarily related species, called “lineage-specific genes,” are pervasive: Essentially every lineage has them, and they often comprise a sizable fraction of the group’s total genes. Lineage-specific genes are often interpreted as “novel” genes, representing genetic novelty born anew within that lineage. Here, we develop a simple method to test an alternative null hypothesis: that lineage-specific genes do have homologs outside of the lineage that, even while evolving at a constant rate in a novelty-free manner, have merely become undetectable by search algorithms used to infer homology. We show that this null hypothesis is sufficient to explain the lack of detected homologs of a large number of lineage-specific genes in fungi and insects. However, we also find that a minority of lineage-specific genes in both clades are not well explained by this novelty-free model. The method provides a simple way of identifying which lineage-specific genes call for special explanations beyond homology detection failure, highlighting them as interesting candidates for further study.
; ;
Malik, Harmit S.
Award ID(s):
Publication Date:
Journal Name:
PLOS Biology
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. John Davey ; Lisa Nagy ; Elizabeth Jockusch ; Julia Bowsher (Ed.)
    Clade-specific (a.k.a. lineage-specific) genes are very common and found at all taxonomic levels and in all clades examined. They can arise by duplication of previously existing genes, which can involve partial truncations or combinations with other protein domains or regulatory sequences. They can also evolve de novo from non-coding sequences, leading to potentially truly novel protein domains. Finally, since clade-specific genes are generally defined by lack of sequence homology with other proteins, they can also arise by sequence evolution that is rapid enough that previous sequence homology can no longer be detected. In such cases, where the rapid evolution is followed by constraint, we consider them to be ontologically non-novel but likely novel at a functional level. In general, clade-specific genes have received less attention from biologists but there are increasing numbers of fascinating examples of their roles in important traits. Here we review some selected recent examples, and argue that attention to clade-specific genes is an important corrective to the focus on the conserved developmental regulatory toolkit that has been the habit of evo-devo as a field. Finally, we discuss questions that arise about the evolution of clade-specific genes, and how these might be addressed by future studies. Wemore »highlight the hy- pothesis that clade-specific genes are more likely to be involved in synapomorphies that arose in the stem group where they appeared, compared to other genes.« less
  2. Evolutionary transitions to a social lifestyle in insects are associated with lineage-specific changes in gene expression, but the key nodes that drive these regulatory changes are unknown. We examined the relationship between social organization and lineage-specific microRNAs (miRNAs). Genome scans across 12 bee species showed that miRNA copy-number is mostly conserved and not associated with sociality. However, deep sequencing of small RNAs in six bee species revealed a substantial proportion (20–35%) of detected miRNAs had lineage-specific expression in the brain, 24–72% of which did not have homologues in other species. Lineage-specific miRNAs disproportionately target lineage-specific genes, and have lower expression levels than shared miRNAs. The predicted targets of lineage-specific miRNAs are not enriched for genes with caste-biased expression or genes under positive selection in social species. Together, these results suggest that novel miRNAs may coevolve with novel genes, and thus contribute to lineage-specific patterns of evolution in bees, but do not appear to have significant influence on social evolution. Our analyses also support the hypothesis that many new miRNAs are purged by selection due to deleterious effects on mRNA targets, and suggest genome structure is not as influential in regulating bee miRNA evolution as has been shown for mammalian miRNAs.
  3. Abstract

    The ability to translate a single genome into multiple phenotypes, or developmental plasticity, defines how phenotype derives from more than just genes. However, to study the evolutionary targets of plasticity and their evolutionary fates, we need to understand how genetic regulators of plasticity control downstream gene expression. Here, we have identified a transcriptional response specific to polyphenism (i.e., discrete plasticity) in the nematode Pristionchus pacificus. This species produces alternative resource-use morphs—microbivorous and predatory forms, differing in the form of their teeth, a morphological novelty—as influenced by resource availability. Transcriptional profiles common to multiple polyphenism-controlling genes in P. pacificus reveal a suite of environmentally sensitive loci, or ultimate target genes, that make up an induced developmental response. Additionally, in vitro assays show that one polyphenism regulator, the nuclear receptor NHR-40, physically binds to promoters with putative HNF4α (the nuclear receptor class including NHR-40) binding sites, suggesting this receptor may directly regulate genes that describe alternative morphs. Among differentially expressed genes were morph-limited genes, highlighting factors with putative “on–off” function in plasticity regulation. Further, predatory morph-biased genes included candidates—namely, all four P. pacificus homologs of Hsp70, which have HNF4α motifs—whose natural variation in expression matches phenotypic differences among P. pacificus wildmore »isolates. In summary, our study links polyphenism regulatory loci to the transcription producing alternative forms of a morphological novelty. Consequently, our findings establish a platform for determining how specific regulators of morph-biased genes may influence selection on plastic phenotypes.

    « less
  4. ABSTRACT Anti-CRISPR (Acr) loci/operons encode Acr proteins and Acr-associated (Aca) proteins. Forty-five Acr families have been experimentally characterized inhibiting seven subtypes of CRISPR-Cas systems. We have developed a bioinformatics pipeline to identify genomic loci containing Acr homologs and/or Aca homologs by combining three computational approaches: homology, guilt-by-association, and self-targeting spacers. Homology search found thousands of Acr homologs in bacterial and viral genomes, but most are homologous to AcrIIA7 and AcrIIA9. Investigating the gene neighborhood of these Acr homologs revealed that only a small percentage (23.0% in bacteria and 8.2% in viruses) of them have neighboring Aca homologs and thus form Acr-Aca operons. Surprisingly, although a self-targeting spacer is a strong indicator of the presence of Acr genes in a genome, a large percentage of Acr-Aca loci are found in bacterial genomes without self-targeting spacers or even without complete CRISPR-Cas systems. Additionally, for Acr homologs from genomes with self-targeting spacers, homology-based Acr family assignments do not always agree with the self-targeting CRISPR-Cas subtypes. Last, by investigating Acr genomic loci coexisting with self-targeting spacers in the same genomes, five known subtypes (I-C, I-E, I-F, II-A, and II-C) and five new subtypes (I-B, III-A, III-B, IV-A, and V-U4) of Acrs were inferred. Basedmore »on these findings, we conclude that the discovery of new anti-CRISPRs should not be restricted to genomes with self-targeting spacers and loci with Acr homologs. The evolutionary arms race of CRISPR-Cas systems and anti-CRISPR systems may have driven the adaptive and rapid gain and loss of these elements in closely related genomes. IMPORTANCE As a naturally occurring adaptive immune system, CRISPR-Cas (clustered regularly interspersed short palindromic repeats–CRISPR-associated genes) systems are widely found in bacteria and archaea to defend against viruses. Since 2013, the application of various bacterial CRISPR-Cas systems has become very popular due to their development into targeted and programmable genome engineering tools with the ability to edit almost any genome. As the natural off-switch of CRISPR-Cas systems, anti-CRISPRs have a great potential to serve as regulators of CRISPR-Cas tools and enable safer and more controllable genome editing. This study will help understand the relative usefulness of the three bioinformatics approaches for new Acr discovery, as well as guide the future development of new bioinformatics tools to facilitate anti-CRISPR research. The thousands of Acr homologs and hundreds of new anti-CRISPR loci identified in this study will be a valuable data resource for genome engineers to search for new CRISPR-Cas regulators.« less
  5. We propose a general method for constructing confidence sets and hypothesis tests that have finite-sample guarantees without regularity conditions. We refer to such procedures as “universal.” The method is very simple and is based on a modified version of the usual likelihood-ratio statistic that we call “the split likelihood-ratio test” (split LRT) statistic. The (limiting) null distribution of the classical likelihood-ratio statistic is often intractable when used to test composite null hypotheses in irregular statistical models. Our method is especially appealing for statistical inference in these complex setups. The method we suggest works for any parametric model and also for some nonparametric models, as long as computing a maximum-likelihood estimator (MLE) is feasible under the null. Canonical examples arise in mixture modeling and shape-constrained inference, for which constructing tests and confidence sets has been notoriously difficult. We also develop various extensions of our basic methods. We show that in settings when computing the MLE is hard, for the purpose of constructing valid tests and intervals, it is sufficient to upper bound the maximum likelihood. We investigate some conditions under which our methods yield valid inferences under model misspecification. Further, the split LRT can be used with profile likelihoods to dealmore »with nuisance parameters, and it can also be run sequentially to yield anytime-valid P values and confidence sequences. Finally, when combined with the method of sieves, it can be used to perform model selection with nested model classes.

    « less