skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Hyperspectral Dimensionality Reduction Based on Inter-Band Redundancy Analysis and Greedy Spectral Selection
Hyperspectral imaging systems are becoming widely used due to their increasing accessibility and their ability to provide detailed spectral responses based on hundreds of spectral bands. However, the resulting hyperspectral images (HSIs) come at the cost of increased storage requirements, increased computational time to process, and highly redundant data. Thus, dimensionality reduction techniques are necessary to decrease the number of spectral bands while retaining the most useful information. Our contribution is two-fold: First, we propose a filter-based method called interband redundancy analysis (IBRA) based on a collinearity analysis between a band and its neighbors. This analysis helps to remove redundant bands and dramatically reduces the search space. Second, we apply a wrapper-based approach called greedy spectral selection (GSS) to the results of IBRA to select bands based on their information entropy values and train a compact convolutional neural network to evaluate the performance of the current selection. We also propose a feature extraction framework that consists of two main steps: first, it reduces the total number of bands using IBRA; then, it can use any feature extraction method to obtain the desired number of feature channels. We present classification results obtained from our methods and compare them to other dimensionality reduction methods on three hyperspectral image datasets. Additionally, we used the original hyperspectral data cube to simulate the process of using actual filters in a multispectral imager.  more » « less
Award ID(s):
1757351
PAR ID:
10329022
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Remote Sensing
Volume:
13
Issue:
18
ISSN:
2072-4292
Page Range / eLocation ID:
3649
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Hyperspectral sensors acquire spectral responses from objects with a large number of narrow spectral bands. The large volume of data may be costly in terms of storage and computational requirements. In addition, hyperspectral data are often information-wise redundant. Band selection intends to overcome these limitations by selecting a small subset of spectral bands that provide more information or better performance for particular tasks. However, existing band selection techniques do not directly maximize the task-specific performance, but rather utilize hand-crafted metrics as a proxy to the final goal of performance improvement. In this paper, we propose a deep learning (DL) architecture composed of a constrained measurement learning network for band selection, followed by a classification network. The proposed joint DL architecture is trained in a data-driven manner to optimize the classification loss along band selection. In this way, the proposed network directly learns to select bands that enhance the classification performance. Our evaluation results with Indian Pines (IP) and the University of Pavia (UP) datasets show that the proposed constrained measurement learning-based band selection approach provides higher classification accuracy compared to the state-of-the-art supervised band selection methods for the same number of bands selected. The proposed method shows 89.08% and 97.78% overall accuracy scores for IP and UP respectively, being 1.34% and 2.19% higher than the second-best method. 
    more » « less
  2. Graph convolutional neural network architectures combine feature extraction and convolutional layers for hyperspectral image classification. An adaptive neighborhood aggregation method based on statistical variance integrating the spatial information along with the spectral signature of the pixels is proposed for improving graph convolutional network classification of hyperspectral images. The spatial-spectral information is integrated into the adjacency matrix and processed by a single-layer graph convolutional network. The algorithm employs an adaptive neighborhood selection criteria conditioned by the class it belongs to. Compared to fixed window-based feature extraction, this method proves effective in capturing the spectral and spatial features with variable pixel neighborhood sizes. The experimental results from the Indian Pines, Houston University, and Botswana Hyperion hyperspectral image datasets show that the proposed AN-GCN can significantly improve classification accuracy. For example, the overall accuracy for Houston University data increases from 81.71% (MiniGCN) to 97.88% (AN-GCN). Furthermore, the AN-GCN can classify hyperspectral images of rice seeds exposed to high day and night temperatures, proving its efficacy in discriminating the seeds under increased ambient temperature treatments. 
    more » « less
  3. Abstract Hyperspectral imaging has broad applications and impacts in areas including environmental science, weather, and geo/space exploration. The intrinsic spectral–spatial structures and potential multi-level features in different frequency bands make multilayer graph an intuitive model for hyperspectral images (HSI). To study the underlying characteristics of HSI and to take the advantage of graph signal processing (GSP) tools, this work proposes a multilayer graph spectral analysis for hyperspectral images based on multilayer graph signal processing (M-GSP). More specifically, we present multilayer graph (MLG) models and tensor representations for HSI. By exploring multilayer graph spectral space, we develop MLG-based methods for HSI applications, including unsupervised segmentation and supervised classification. Our experimental results demonstrate the strength of M-GSP in HSI processing and spectral–spatial information extraction. 
    more » « less
  4. Abstract. Most deep learning (DL) methods that are not end-to-end use several multi-scale and multi-type hand-crafted features that make the network challenging, more computationally intensive and vulnerable to overfitting. Furthermore, reliance on empirically-based feature dimensionality reduction may lead to misclassification. In contrast, efficient feature management can reduce storage and computational complexities, builds better classifiers, and improves overall performance. Principal Component Analysis (PCA) is a well-known dimension reduction technique that has been used for feature extraction. This paper presents a two-step PCA based feature extraction algorithm that employs a variant of feature-based PointNet (Qi et al., 2017a) for point cloud classification. This paper extends the PointNet framework for use on large-scale aerial LiDAR data, and contributes by (i) developing a new feature extraction algorithm, (ii) exploring the impact of dimensionality reduction in feature extraction, and (iii) introducing a non-end-to-end PointNet variant for per point classification in point clouds. This is demonstrated on aerial laser scanning (ALS) point clouds. The algorithm successfully reduces the dimension of the feature space without sacrificing performance, as benchmarked against the original PointNet algorithm. When tested on the well-known Vaihingen data set, the proposed algorithm achieves an Overall Accuracy (OA) of 74.64% by using 9 input vectors and 14 shape features, whereas with the same 9 input vectors and only 5PCs (principal components built by the 14 shape features) it actually achieves a higher OA of 75.36% which demonstrates the effect of efficient dimensionality reduction. 
    more » « less
  5. Feature extraction, such as spectral occupancy, interferer energy and type, or direction-of-arrival, from wideband radio-frequency (RF) signals finds use in a growing number of applications as it enhances RF transceivers with cognitive abilities and enables parameter tuning of traditional RF chains. In power and cost limited applications, e.g., for sensor nodes in the Internet of Things, wideband RF feature extraction with conventional, Nyquist-rate analog-to-digital converters is infeasible. However, the structure of many RF features (such as signal sparsity) enables the use of compressive sensing (CS) techniques that acquire such signals at sub-Nyquist rates; while such CS-based analog-to-information (A2I) converters have the potential to enable low-cost and energy-efficient wideband RF sensing, they suffer from a variety of real-world limitations, such as noise folding, low sensitivity, aliasing, and limited flexibility. This paper proposes a novel CS-based A2I architecture called non-uniform wavelet sampling. Our solution extracts a carefully-selected subset of wavelet coefficients directly in the RF domain, which mitigates the main issues of existing A2I converter architectures. For multi-band RF signals, we propose a specialized variant called non-uniform wavelet bandpass sampling (NUWBS), which further improves sensitivity and reduces hardware complexity by leveraging the multi-band signal structure. We use simulations to demonstrate that NUWBS approaches the theoretical performance limits of ℓ₁-norm-based sparse signal recovery. We investigate hardware-design aspects and show ASIC measurement results for the wavelet generation stage, which highlight the efficacy of NUWBS for a broad range of RF feature extraction tasks in cost- and power-limited applications. 
    more » « less