skip to main content

Title: Hyporheic hydraulic geometry: Conceptualizing relationships among hyporheic exchange, storage, and water age
Hyporheic exchange is now widely acknowledged as a key driver of ecosystem processes in many streams. Yet stream ecologists have been slow to adopt nuanced hydrologic frameworks developed and applied by engineers and hydrologists to describe the relationship between water storage, water age, and water balance in finite hydrosystems such as hyporheic zones. Here, in the context of hyporheic hydrology, we summarize a well-established mathematical framework useful for describing hyporheic hydrology, while also applying the framework heuristically to visualize the relationships between water age, rates of hyporheic exchange, and water volume within hyporheic zones. Building on this heuristic application, we discuss how improved accuracy in the conceptualization of hyporheic exchange can yield a deeper understanding of the role of the hyporheic zone in stream ecosystems. Although the equations presented here have been well-described for decades, our aim is to make the mathematical basis as accessible as possible and to encourage broader understanding among aquatic ecologists of the implications of tailed age distributions commonly observed in water discharged from and stored within hyporheic zones. Our quantitative description of “hyporheic hydraulic geometry,” associated visualizations, and discussion offer a nuanced and realistic understanding of hyporheic hydrology to aid in considering hyporheic exchange in more » the context of river and stream ecosystem science and management. « less
; ; ; ; ; ; ;
Mendoza-Lera, Clara
Award ID(s):
1757351 1945941
Publication Date:
Journal Name:
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. High concentrations of trace metal(loid)s exported from abandoned mine wastes and acid rock drainage pose a risk to the health of aquatic ecosystems. To determine if and when the hyporheic zone mediates metal(loid) export, we investigated the relationship between streamflow, groundwater–stream connectivity, and subsurface metal(loid) concentrations in two ~1-km stream reaches within the Bonita Peak Mining District, a US Environmental Protection Agency Superfund site located near Silverton, Colorado, USA. The hyporheic zones of reaches in two streams—Mineral Creek and Cement Creek—were characterized using a combination of salt-tracer injection tests, transient-storage modeling, and geochemical sampling of the shallow streambed (<0.7 m). Based on these data, we present two conceptual models for subsurface metal(loid) behavior in the hyporheic zones, including (1) well-connected systems characterized by strong hyporheic mixing of infiltrating stream water and upwelling groundwater and (2) poorly connected systems delineated by physical barriers that limit hyporheic mixing. The comparatively large hyporheic zone and high hydraulic conductivities of Mineral Creek created a connected stream–groundwater system, where mixing of oxygen-rich stream water and metal-rich groundwater facilitated the precipitation of metal colloids in the shallow subsurface. In Cement Creek, the precipitation of iron oxides at depth (~0.4 m) created a low-hydraulic-conductivity barrier between surfacemore »water and groundwater. Cemented iron oxides were an important regulator of metal(loid) concentrations in this poorly connected stream–groundwater system due to the formation of strong redox gradients induced by a relatively small hyporheic zone and high fluid residence times. A comparison of conceptual models to stream concentration–discharge relationships exhibited a clear link between geochemical processes occurring within the hyporheic zone of the well-connected system and export of particulate Al, Cu, Fe, and Mn, while the poorly connected system did not have a notable influence on metal concentration–discharge trends. Mineral Creek is an example of a hyporheic system that serves as a natural dissolved metal(loid) sink, whereas poorly connected systems such as Cement Creek may require a combination of subsurface remediation of sediments and mitigation of upstream, iron-rich mine drainages to reduce metal export.« less
  2. Green infrastructure is an increasingly popular approach to mitigate widespread degradation of urban waters from stormwater pollution. However, many stormwater best management practices (BMPs) have inconsistent water quality performance and are limited to on-site, land-based deployments. To address basin-wide pollutant loads still reaching urban streams, hyporheic zone engineering has been proposed as an in-stream treatment strategy. Recognizing that regulator and practitioner perspectives are essential for innovation in the water sector, we interviewed U.S. water management professionals about the perceived risks, opportunities, and knowledge gaps related to in-stream stormwater treatment. We used engineered hyporheic zones as a case study to understand interviewee perspectives on an emerging class of in-stream treatment technologies. Interviews revealed that many considerations for in-stream stormwater treatment are common to land-based BMPs, but in-stream BMPs have additional unique design and siting requirements. Here, we synthesize practitioner goals, their recommendations on in-stream BMP design, and open research questions related to in-stream BMPs. Many interviewees suggested pairing engineered hyporheic zones with other BMPs in a treatment train to improve in-stream treatment, while simultaneously reducing risk and cost. We discuss how treatment trains and other strategies might also help overcome regulatory hurdles for innovative stormwater treatment.
  3. Hyporheic exchange is a crucial control of the type and rates of streambed biogeochemical processes, including metabolism, respiration, nutrient turnover, and the transformation of pollutants. Previous work has shown that increasing discharge during an individual peak‐flow event strengthens biogeochemical turnover by enhancing the exchange of water and dissolved solutes. However, due to the non‐steady nature of the exchange process, successive peak‐flow events do not exhibit proportional variations in residence time and turnover, and in some cases, can reduce the hyporheic zones' biogeochemical potential. Here, we used a process‐based model to explore the role of successive peak‐flow events on the flow and transport characteristics of bedform‐induced hyporheic exchange. We conducted a systematic analysis of the impacts of the events' magnitude, duration, and time between peaks in the hyporheic zone's fluxes, penetration, and residence times. The relative contribution of each event to the transport of solutes across the sediment‐water interface was inferred from transport simulations of a conservative solute. In addition to temporal variations in the hyporheic flow field, our results demonstrate that the separation between two events determines the temporal evolution of residence time, and that event time lags longer than the memory of the system result in successive events thatmore »can be treated independently. This study highlights the importance of discharge variability in the dynamics of hyporheic exchange and its potential implications for biogeochemical transformations and fate of contaminants along river corridors.« less
  4. Abstract. Groundwater table dynamics extensively modify the volume of the hyporheic zoneand the rate of hyporheic exchange processes. Understanding the effects ofdaily groundwater table fluctuations on the tightly coupled flow and heattransport within hyporheic zones is crucial for water resourcesmanagement. With this aim in mind, a physically based model is used to explorehyporheic responses to varying groundwater table fluctuationscenarios. The effects of different timing and amplitude of groundwater tabledaily drawdowns under gaining and losing conditions are explored in hyporheiczones influenced by natural flood events and diel river temperaturefluctuations. We find that both diel river temperature fluctuations and dailygroundwater table drawdowns play important roles in determining thespatiotemporal variability of hyporheic exchange rates, temperature ofexfiltrating hyporheic fluxes, mean residence times, and hyporheicdenitrification potentials. Groundwater table dynamics present substantiallydistinct impacts on hyporheic exchange under gaining or losing conditions. Thetiming of groundwater table drawdown has a direct influence on hyporheicexchange rates and hyporheic buffering capacity on thermaldisturbances. Consequently, the selection of aquifer pumping regimes hassignificant impacts on the dispersal of pollutants in the aquifer and thermalheterogeneity in the sediment.
  5. Fecal contamination is a significant source of water quality impairment globally. Aquatic ecosystems can provide an important ecosystem service of fecal contamination removal. Understanding the processes that regulate the removal of fecal contamination among river networks across flow conditions is critical. We applied a river network model, the Framework for Aquatic Modeling in the Earth System (FrAMES-Ecoli), to quantify removal of fecal indicator bacteria by river networks across flow conditions during summers in a series of New England watersheds of different characteristics. FrAMES-Ecoli simulates sources, transport, and riverine removal of Escherichia coli (E. coli). Aquatic E. coli removal was simulated in both the water column and the hyporheic zone, and is a function of hydraulic conditions, flow exchange rates with the hyporheic zone, and die-off in each compartment. We found that, at the river network scale during summers, removal by river networks can be high (19–99%) with variability controlled by hydrologic conditions, watershed size, and distribution of sources in the watershed. Hydrology controls much of the variability, with 68–99% of network scale inputs removed under base flow conditions and 19–85% removed during storm events. Removal by the water column alone could not explain the observed pattern in E. coli, suggestingmore »that processes such as hyporheic removal must be considered. These results suggest that river network removal of fecal indicator bacteria should be taken into consideration in managing fecal contamination at critical downstream receiving waters.« less