Traffic Stop is a virtual reality de-escalation training simulation for police officers that has an interactive story driven by artificial intelligence. This project was funded by the U.S. National Science Foundation and led by Prof. Stephen Ware of the Narrative Intelligence Lab at the University of Kentucky.
more »
« less
The rapid acidification of sea spray aerosols
This quick study looked at a method for determining aerosol acidity developed by Prof. Ault and utilized by Prof. Grassian and Mr. Angle to study size-dependence in sea spray aerosol.
more »
« less
- Award ID(s):
- 1654149
- PAR ID:
- 10329178
- Date Published:
- Journal Name:
- Physics today
- Volume:
- 75
- Issue:
- 1
- ISSN:
- 1945-0699
- Page Range / eLocation ID:
- 58-59
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Particle acidity (aerosol pH) is an important driver of atmospheric chemical processes and the resulting effects on human and environmental health. Understanding the factors that control aerosol pH is critical when enacting control strategies targeting specific outcomes. This study characterizes aerosol pH at a land-water transition site near Baltimore, MD during summer 2018 as part of the second Ozone Water-Land Environmental Transition Study (OWLETS-2) field campaign. Inorganic fine mode aerosol composition, gas-phase NH3 measurements, and all relevant meteorological parameters were used to characterize the effects of temperature, aerosol liquid water (ALW), and composition on predictions of aerosol pH. Temperature, the factor linked to the control of NH3 partitioning, was found to have the most significant effect on aerosol pH during OWLETS-2. Overall, pH varied with temperature at a rate of −0.047 K−1 across all observations, though the sensitivity was −0.085 K−1 for temperatures > 293 K. ALW had a minor effect on pH, except at the lowest ALW levels (< 1 µg m−3) which caused a significant increase in aerosol acidity (decrease in pH). Aerosol pH was generally insensitive to composition (SO42− , SO42−:NH4+ , Tot-NH3 = NH3 + NH4+), consistent with recent studies in other locations. In a companion paper, the sources of episodic NH3 events (95th percentile concentrations, NH3 > 7.96 µg m−3) during the study are analyzed; aerosol pH was higher by only ~0.1–0.2 pH units during these events compared to the study mean. A case study was analyzed to characterize the response of aerosol pH to nonvolatile cations (NVCs) during a period strongly influenced by primary Chesapeake Bay emissions. Depending on the method used, aerosol pH was estimated to be either weakly (~0.1 pH unit change based on NH3 partitioning calculation) or strongly (~1.4 pH unit change based on ISORROPIA thermodynamic model predictions) affected by NVCs. The case study suggests a strong pH gradient with size during the event and underscores the need to evaluate assumptions of aerosol mixing state applied to pH calculations. Unique features of this study, including the urban land-water transition site and the strong influence of NH3 emissions from both agricultural and industrial sources, add to the understanding of aerosol pH and its controlling factors in diverse environments.more » « less
-
Abstract. Particle acidity (aerosol pH) is an important driver of atmospheric chemical processes and the resulting effects on human and environmentalhealth. Understanding the factors that control aerosol pH is critical when enacting control strategies targeting specific outcomes. This studycharacterizes aerosol pH at a land–water transition site near Baltimore, MD, during summer 2018 as part of the second Ozone Water-Land EnvironmentalTransition Study (OWLETS-2) field campaign. Inorganic fine-mode aerosol composition, gas-phase NH3 measurements, and all relevantmeteorological parameters were used to characterize the effects of temperature, aerosol liquid water (ALW), and composition on predictions ofaerosol pH. Temperature, the factor linked to the control of NH3 partitioning, was found to have the most significant effect on aerosol pHduring OWLETS-2. Overall, pH varied with temperature at a rate of −0.047 K−1 across all observations, though the sensitivity was−0.085 K−1 for temperatures > 293 K. ALW had a minor effect on pH, except at the lowest ALW levels(< 1 µg m−3), which caused a significant increase in aerosol acidity (decrease in pH). Aerosol pH was generally insensitive tocomposition (SO42-, SO42-:NH4+, total NH3 (Tot-NH3) = NH3 + NH4+), consistentwith recent studies in other locations. In a companion paper, the sources of episodic NH3 events (95th percentile concentrations,NH3 > 7.96 µg m−3) during the study are analyzed; aerosol pH was higher by only ∼ 0.1–0.2 pH unitsduring these events compared to the study mean. A case study was analyzed to characterize the response of aerosol pH to nonvolatile cations (NVCs)during a period strongly influenced by primary Chesapeake Bay emissions. Depending on the method used, aerosol pH was estimated to be either weakly(∼ 0.1 pH unit change based on NH3 partitioning calculation) or strongly (∼ 1.4 pH unit change based onISORROPIA thermodynamic model predictions) affected by NVCs. The case study suggests a strong pH gradient with size during the event and underscores the need to evaluate assumptions of aerosol mixing state applied to pH calculations. Unique features of this study, including the urban land–water transition site and the strong influence of NH3 emissions from both agricultural and industrial sources, add to the understanding of aerosol pH and its controlling factors in diverseenvironments.more » « less
-
null (Ed.)Abstract. The aerosol–planetary boundary layer (PBL) interaction wasproposed as an important mechanism to stabilize the atmosphere andexacerbate surface air pollution. Despite the tremendous progress made inunderstanding this process, its magnitude and significance still have largeuncertainties and vary largely with aerosol distribution and meteorologicalconditions. In this study, we focus on the role of aerosol verticaldistribution in thermodynamic stability and PBL development by jointly usingmicropulse lidar, sun photometer, and radiosonde measurements taken inBeijing. Despite the complexity of aerosol vertical distributions,cloud-free aerosol structures can be largely classified into three types:well-mixed, decreasing with height, and inverse structures. The aerosol–PBLrelationship and diurnal cycles of the PBL height and PM2.5 associated with these different aerosol vertical structures showdistinct characteristics. The vertical distribution of aerosol radiativeforcing differs drastically among the three types, with strong heating in thelower, middle, and upper PBL, respectively. Such a discrepancy in the heatingrate affects the atmospheric buoyancy and stability differently in the threedistinct aerosol structures. Absorbing aerosols have a weaker effect ofstabilizing the lower atmosphere under the decreasing structure than underthe inverse structure. As a result, the aerosol–PBL interaction can bestrengthened by the inverse aerosol structure and can be potentiallyneutralized by the decreasing structure. Moreover, aerosols can both enhanceand suppress PBL stability, leading to both positive and negativefeedback loops. This study attempts to improve our understanding of theaerosol–PBL interaction, showing the importance of the observationalconstraint of aerosol vertical distribution for simulating this interactionand consequent feedbacks.more » « less
-
null (Ed.)As fragment-based drug discovery has become mainstream, there has been an increase in various screening methodologies. Protein-observed 19F (PrOF) NMR and 1H CPMG NMR are two fragment screening assays that have complementary advantages. Here, we sought to combine these two NMR-based assays into a new screening workflow. This combination of protein- and ligand-observed experiments allows for a time- and resource-efficient multiplexed screen of mixtures of fragments and proteins. PrOF NMR is first used to screen mixtures against two proteins. Hit mixtures for each protein are identified then deconvoluted using 1H CPMG NMR. We demonstrate the benefit of this fragment screening method by conducting the first reported fragment screens against the bromodomains of BPTF and Plasmodium falciparum (Pf) GCN5 using 467 3D-enriched fragments. The hit rates were 6%, 5% and 4% for fragments binding BPTF, PfGCN5, and fragments binding both proteins, respectively. Select hits were characterized, revealing a broad range of affinities from low µM to mM dissociation constants. Follow-up experiments supported a low-affinity second binding site on PfGCN5. This approach can be used to bias fragment screens towards more selective hits at the onset of inhibitor development in a resource- and time-efficient manner.more » « less
An official website of the United States government

