skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Tup1 Paralog CgTUP11 Is a Stronger Repressor of Transcription than CgTUP1 in Candida glabrata
ABSTRACT TUP1 is a well-characterized repressor of transcription in Saccharomyces cerevisiae and Candida albicans and is observed as a single-copy gene. We observe that most species that experienced a whole-genome duplication outside of the Saccharomyces genus have two copies of TUP1 in the Saccharomycotina yeast clade. We focused on Candida glabrata and demonstrated that the uncharacterized TUP1 homolog, C. glabrata TUP11 ( CgTUP11 ), is most like the S. cerevisiae TUP1 ( ScTUP1 ) gene through phenotypic assays and transcriptome sequencing (RNA-seq). Whereas CgTUP1 plays a role in gene repression, it is much less repressive in standard growth media. Through RNA-seq and reverse transcription-quantitative PCR (RT-qPCR), we observed that genes associated with pathogenicity ( YPS2 , YPS4 , and HBN1 ) are upregulated upon deletion of either paralog, and loss of both paralogs is synergistic. Loss of the corepressor CgCYC8 mimics the loss of both paralogs, but not to the same extent as the Cgtup1 Δ Cgtup11 Δ mutant for these pathogenesis-related genes. In contrast, genes involved in energy metabolism ( CgHXT2 , CgADY2 , and CgFBP1 ) exhibit similar behavior (dependence on both paralogs), but deletion of CgCYC8 is very similar to the Cgtup1 Δ Cgtup11 Δ mutant. Finally, some genes ( CgMFG1 and CgRIE1 ) appear to only be dependent on CgTUP11 and CgCYC8 and not CgTUP1 . These data indicate separable and overlapping roles for the two TUP1 paralogs and that other genes may function as the Cg Cyc8 corepressor. Through a comparison by RNA-seq of Sctup1 Δ, it was found that TUP1 homologs regulate similar genes in the two species. This work highlights that studies focused only on Saccharomyces may miss important biological processes because of paralog loss after genome duplication. IMPORTANCE Due to a whole-genome duplication, many yeast species related to C. glabrata have two copies of the well-characterized TUP1 gene, unlike most Saccharomyces species. This work identifies roles for the paralogs in C. glabrata , highlights the importance of the uncharacterized paralog, called TUP11 , and suggests that the two paralogs have both overlapping and unique functions. The TUP1 paralogs likely influence pathogenicity based on tup mutants upregulating genes that are associated with pathogenicity.  more » « less
Award ID(s):
1921632
PAR ID:
10329252
Author(s) / Creator(s):
; ;
Editor(s):
Mitchell, Aaron P.
Date Published:
Journal Name:
mSphere
Volume:
7
Issue:
2
ISSN:
2379-5042
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Zhang, Jianzhi (Ed.)
    Abstract The amplification and diversification of genes into large multi-gene families often mark key evolutionary innovations, but this process often creates genetic redundancy that hinders functional investigations. When the model budding yeast Saccharomyces cerevisiae transitions to anaerobic growth conditions, the cell massively induces the expression of seven serine/threonine-rich anaerobically-induced cell wall mannoproteins (anCWMPs): TIP1, TIR1, TIR2, TIR3, TIR4, DAN1, and DAN4. Here, we show that these genes likely derive evolutionarily from a single ancestral anCWMP locus, which was duplicated and translocated to new genomic contexts several times both prior to and following the budding yeast whole genome duplication (WGD) event. Based on synteny and their phylogeny, we separate the anCWMPs into four gene subfamilies. To resolve prior inconclusive genetic investigations of these genes, we constructed a set of combinatorial deletion mutants to determine their contributions toward anaerobic growth in S. cerevisiae. We found that two genes, TIR1 and TIR3, were together necessary and sufficient for the anCWMP contribution to anaerobic growth. Overexpressing either gene alone was insufficient for anaerobic growth, implying that they encode non-overlapping functional roles in the cell during anaerobic growth. We infer from the phylogeny of the anCWMP genes that these two important genes derive from an ancient duplication that predates the WGD event, whereas the TIR1 subfamily experienced gene family amplification after the WGD event. Taken together, the genetic and molecular evidence suggests that one key anCWMP gene duplication event, several auxiliary gene duplication events, and functional divergence underpin the evolution of anaerobic growth in budding yeasts. 
    more » « less
  2. Misra, Hari S. (Ed.)
    Understanding metabolism in the pathogen Candida glabrata is key to identifying new targets for antifungals. The thiamine biosynthetic (THI) pathway is partially defective in C . glabrata , but the transcription factor Cg Pdc2 upregulates some thiamine biosynthetic and transport genes. One of these genes encodes a recently evolved thiamine pyrophosphatase ( CgPMU3 ) that is critical for accessing external thiamine. Here, we demonstrate that Cg Pdc2 primarily regulates THI genes. In Saccharomyces cerevisiae , Pdc2 regulates both THI and pyruvate decarboxylase (PDC) genes, with PDC proteins being a major thiamine sink. Deletion of PDC2 is lethal in S . cerevisiae in standard growth conditions, but not in C . glabrata . We uncover cryptic cis elements in C . glabrata PDC promoters that still allow for regulation by Sc Pdc2, even when that regulation is not apparent in C . glabrata . C . glabrata lacks Thi2, and it is likely that inclusion of Thi2 into transcriptional regulation in S . cerevisiae allows for a more complex regulation pattern and regulation of THI and PDC genes. We present evidence that Pdc2 functions independent of Thi2 and Thi3 in both species. The C-terminal activation domain of Pdc2 is intrinsically disordered and critical for species differences. Truncation of the disordered domains leads to a gradual loss of activity. Through a series of cross species complementation assays of transcription, we suggest that there are multiple Pdc2-containing complexes, and C . glabrata appears to have the simplest requirement set for THI genes, except for CgPMU3 . CgPMU3 has different cis requirements, but still requires Pdc2 and Thi3 to be upregulated by thiamine starvation. We identify the minimal region sufficient for thiamine regulation in CgTHI20 , CgPMU3 , and ScPDC5 promoters. Defining the cis and trans requirements for THI promoters should lead to an understanding of how to interrupt their upregulation and provide targets in metabolism for antifungals. 
    more » « less
  3. Dyer, Kelly A (Ed.)
    Genetic networks are surprisingly robust to perturbations caused by new mutations. This robustness is conferred in part by compensation for loss of a gene’s activity by genes with overlapping functions, such as paralogs. Compensation occurs passively when the normal activity of one paralog can compensate for the loss of the other, or actively when a change in one paralog’s expression, localization, or activity is required to compensate for loss of the other. The mechanisms of active compensation remain poorly understood in most cases. Here we investigate active compensation for the loss or reduction in expression of theSaccharomyces cerevisiaegeneTDH3by its paralogTDH2.TDH2is upregulated in a dose-dependent manner in response to reductions inTDH3by a mechanism requiring the shared transcriptional regulators Gcr1p and Rap1p.TDH1, a second and more distantly related paralog ofTDH3, has diverged in its regulation and is upregulated by another mechanism. Other glycolytic genes regulated by Rap1p and Gcr1p show changes in expression similar toTDH2, suggesting that the active compensation byTDH3paralogs is part of a broader homeostatic response mediated by shared transcriptional regulators. 
    more » « less
  4. Abstract Gene duplication is a source of evolutionary novelty. DNA methylation may play a role in the evolution of duplicate genes (paralogs) through its association with gene expression. While this relationship has been examined to varying extents in a few individual species, the generalizability of these results at either a broad phylogenetic scale with species of differing duplication histories or across a population remains unknown. We applied a comparative epigenomic approach to 43 angiosperm species across the phylogeny and a population of 928 Arabidopsis (Arabidopsis thaliana) accessions, examining the association of DNA methylation with paralog evolution. Genic DNA methylation was differentially associated with duplication type, the age of duplication, sequence evolution, and gene expression. Whole-genome duplicates were typically enriched for CG-only gene body methylated or unmethylated genes, while single-gene duplications were typically enriched for non-CG methylated or unmethylated genes. Non-CG methylation, in particular, was a characteristic of more recent single-gene duplicates. Core angiosperm gene families were differentiated into those which preferentially retain paralogs and “duplication-resistant” families, which convergently reverted to singletons following duplication. Duplication-resistant families that still have paralogous copies were, uncharacteristically for core angiosperm genes, enriched for non-CG methylation. Non-CG methylated paralogs had higher rates of sequence evolution, higher frequency of presence–absence variation, and more limited expression. This suggests that silencing by non-CG methylation may be important to maintaining dosage following duplication and be a precursor to fractionation. Our results indicate that genic methylation marks differing evolutionary trajectories and fates between paralogous genes and have a role in maintaining dosage following duplication. 
    more » « less
  5. ABSTRACT The posterior end of the follicular epithelium is patterned by midline (MID) and its paralog H15, the Drosophila homologs of the mammalian Tbx20 transcription factor. We have previously identified two cis-regulatory modules (CRMs) that recapitulate the endogenous pattern of mid in the follicular epithelium. Here, using CRISPR/Cas9 genome editing, we demonstrate redundant activity of these mid CRMs. Although the deletion of either CRM alone generated marginal change in mid expression, the deletion of both CRMs reduced expression by 60%. Unexpectedly, the deletion of the 5′ proximal CRM of mid eliminated H15 expression. Interestingly, expression of these paralogs in other tissues remained unaffected in the CRM deletion backgrounds. These results suggest that the paralogs are regulated by a shared CRM that coordinates gene expression during posterior fate determination. The consistent overlapping expression of mid and H15 in various tissues may indicate that the paralogs could also be under shared regulation by other CRMs in these tissues. 
    more » « less