This study is part of the preliminary experimental investigations designed to assess the feasibility of using supercritical carbon dioxide (sCO2) in the vicinity of its critical point for thermal management applications. In the present study, sCO2 was used as a working fluid in a diffusion bonded 316/316L stainless steel test section having staggered micro pin fin array flow passages of hydraulic diameter 679 µm (0.679 mm). The test section was subjected to a single wall non-uniform heat flux boundary condition and was operated in a horizontal orientation. The primary objective was to characterize the heat transfer performance of sCO2 as it flows through the staggered pin fin array for experimental conditions that span its critical and pseudocritical point. Data analysis methods employing 2-D and 3-D heat transfer models of the test section were used to calculate the average heat transfer coefficients for a given set of experimental conditions. Experiments were conducted by varying the inlet temperature (18 ≤ T_in ≤ 50 °C) and for fixed mass flux (300 kg m-2 s-1), heat flux (40 W cm-2), and reduced pressure (1.1). Experimental data were also compared against the predictions of a correlation proposed for single phase flows in microchannel staggered diamond pin arrays. The correlation predicted the data within 4.3 % when the ratio, T_Bulk/T_PC exceeded 1. It was also found that the enhancement in the heat transfer, a result of employing staggered pin array flow geometry instead of microchannels, carries a commensurate penalty in pressure drop.
more »
« less
Investigation of Buoyancy Effects in Asymmetrically Heated Near-Critical Flows of Carbon Dioxide in Horizontal Microchannels Using Infrared Thermography
In this study, we use infrared thermography to calculate local heat transfer coefficients of top and bottom heated flows of near-critical carbon dioxide in an array of parallel microchannels. These data are used to evaluate the relative importance of buoyancy for different flow arrangements. A Joule heated thin wall made of Inconel 718 applies a uniform heat flux either above or below the horizontal flow. A Torlon PAI test section consists of three parallel microchannels with a hydraulic diameter of 923 μm. The reduced inlet temperature (TR = 1.006) and reduced pressure (PR = 1.03) are held constant. For each heater orientation, the mass flux (520 kgm−2s−2 ≤ G ≤ 800 kgm−2s−2) and heat flux (4.7 Wcm−2 ≤ q″ ≤ 11.1 Wcm−2) are varied. A 2D resistance network analysis method calculates the bulk temperatures and heat transfer coefficients. In this analysis, we divide the test section into approximately 250 segments along the stream-wise direction. We then calculate the bulk temperatures using the enthalpy from the upstream segment, the heat flux in a segment, and the pressure. To isolate the effect of buoyancy, we screen the data to omit conditions where flow acceleration may be important or where relaminarization may occur. In the developed region of the channel, there was a 10 to 15 percent reduction of the local heat transfer coefficients for the upward heating mode compared to downward heating with the same mass and heat fluxes. Thus buoyancy effects should be considered when developing correlations for these types of flow.
more »
« less
- Award ID(s):
- 1943458
- PAR ID:
- 10329380
- Date Published:
- Journal Name:
- ASME 2021 Heat Transfer Summer Conference collocated with the ASME 2021 15th International Conference on Energy Sustainability
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper focuses on two-phase flow boiling of dielectric coolant HFE 7000 inside a copper multi-microchannel heat sink for high heat flux chip applications. The heat sink is composed of parallel microchannels, 200 μm wide, 2500 μm high, and 20 mm long, with 200-μm-thick fins separating the channels. The copper heat sink consists of almost 100 channels connected by a longitude groove with a nearly trapezoidal cross section. Coolant impinges down to the base at the groove and then goes along the microchannels. A copper block heater arrangement was used to mimic a computer chip with a footprint of 1”x1” (6.45 cm2). The base heat flux was varied from 7.75 W/cm2 to 96.1 W/cm2 and the mass flux from 547.6 to 958.4 kg/m2s, at a nominal saturation temperature of 54 °C. Heat transfer coefficients as high as 57.5 kW/m2K were reached, keeping the base temperature under 66 °C with a maximum of 21.9 kPa of pressure drop, for inlet subcooling of 5 degree and a coolant flow rate of 958.4 kg/m2. Effects of inner diameter of tubing on thermal performance and pressure drop are also discussed. It was observed that an increase of tubing inner diameter by 60 % can result in increase of heat transfer coefficient by 47.8 % and reduction in pressure drop by 63 %.more » « less
-
The objective of this paper is to use fiber optic sensors embedded in a tube wall to measure local convective heat transfer coefficients of a single-phase fluid. By using Rayleigh backscatter and an interferometer technique, mechanical changes in a fiber sensor that are proportional to temperature can be detected. This allows the location and magnitude of the temperature along the fiber to be measured. Using these fibers, we can measure axial profiles of the wall temperature in a heated tube with an internal fluid. By using multiple sensors spaced circumferentially around the tube, we can then generate axial and circumferential temperature maps of the tube wall. When combined with a known uniformly applied heat flux, these measurements can be used to determine the local heat transfer coefficients for single-, two-phase, and supercritical flows. In this study we consider a horizontal tube with internal diameter of 4.57 mm and heated length of 0.4 m. Using the fibers, wall temperature is measured every 0.7 mm in the streamwise direction at eight evenly spaced axial locations with an uncertainty of 2 °C. Co-located, calibrated thermocouples will verify the fiber temperature readings. Electric heaters provide a heat flux up to 20 W/cm2. Using this setup, heat transfer coefficients in the developing and fully developed region are obtained for water in laminar flow regimes and compared with established convective heat transfer correlations and models. The measured heat transfer coefficients in agreement with what is expected. In future work, this test section will be used to study nearcritical carbon dioxide convective heat transfer in both steady and transient conditions.more » « less
-
This study presents numerical simulations of the convective heat transfer on wavy microchannels to investigate heat transfer enhancement in these systems. The objective is to propose a methodology based on local and global energy balances in the device, instead of the commonly used Nusselt number, as an alternative for the thermal analysis. This investigation is carried out on a single-wave microchannel model of size 0.5 mm by 0.5 mm by 20 mm length, with water flowing inside the channel, exposed to a heat influx of 47 W/cm2 at the bottom. The governing equations for an incompressible laminar flow and conjugate heat transfer are first built, and then solved, for representative models, with copper as the solid-block material under a number of operating conditions (cold-water flowrates of 𝑅𝑒=50, 100, and 150), by the finite element technique. From computed velocity, pressure and temperature fields, local and global energy balances based on cross-section-averaged velocities and temperatures enable calculating the heat rate at each section of the corresponding device. Results from this study for two different designs, namely, serpentine and divergent-convergent layouts, show that this so-called averaged energy-balance methodology enables higher accuracy than that based on Nusselt numbers since neither transfer coefficients nor characteristic temperatures are needed.more » « less
-
A comprehensive understanding of heat transfer mechanisms and hydrodynamics during droplet impingement on a heated surface and subsequent evaporation is crucial for improving heat transfer models, optimizing surface engineering, and maximizing overall effectiveness. This work showcases findings related to heat transfer mechanisms and simultaneous tracking of the moving contact line (MCL) for subcooled impinging droplets across a range of surface temperatures, utilizing a custom MEMS device, at multiple impact velocities. Experimental results show that heat flux caused by droplet impingement has a weaker dependence on surface temperature than receding MCL heat transfer due to evaporation, which is significantly surface temperature dependent. The measurements also demonstrate that when a droplet impacts a heated surface and evaporates, the process can be divided into two segments based on the effective heat transfer rate: an initial conduction-dominated segment followed by another segment dominated by surface evaporation. For subcooled impinging droplets, the effect of oscillatory motion is found to be negligible, unlike in a superheated regime; hence, heat conduction into the droplet entirely governs the first segment. Results also show that heat flux at the solid-liquid interface of an impinging droplet increases with the rise of either impact velocity or surface temperature. In the subcooled regime, droplets impacting a heated surface have approximately 1.6 times higher vertical heat flux values than gently deposited droplets. Furthermore, this study quantifies the contributions of buoyancy and thermocapillary convection within the droplet to the overall heat transfer.more » « less
An official website of the United States government

