skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Model-Free Reinforcement Learning for Branching Markov Decision Processes
We study reinforcement learning for the optimal control of Branching Markov Decision Processes (BMDPs), a natural extension of (multitype) Branching Markov Chains (BMCs). The state of a (discrete-time) BMCs is a collection of entities of various types that, while spawning other entities, generate a payoff. In comparison with BMCs, where the evolution of a each entity of the same type follows the same probabilistic pattern, BMDPs allow an external controller to pick from a range of options. This permits us to study the best/worst behaviour of the system. We generalise model-free reinforcement learning techniques to compute an optimal control strategy of an unknown BMDP in the limit. We present results of an implementation that demonstrate the practicality of the approach.  more » « less
Award ID(s):
2009022
PAR ID:
10329429
Author(s) / Creator(s):
; ; ; ; ;
Editor(s):
Silva, A.; Leino, K.R.M.
Date Published:
Journal Name:
Computer Aided Verification. CAV 2021.
Page Range / eLocation ID:
651-673
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Biere, Armin; Parker, David (Ed.)
    We characterize the class of nondeterministic 𝜔-automata that can be used for the analysis of finite Markov decision processes (MDPs). We call these automata ‘good-for-MDPs’ (GFM). We show that GFM automata are closed under classic simulation as well as under more powerful simulation relations that leverage properties of optimal control strategies for MDPs. This closure enables us to exploit state-space reduction techniques, such as those based on direct and delayed simulation, that guarantee simulation equivalence. We demonstrate the promise of GFM automata by defining a new class of automata with favorable properties—they are Büchi automata with low branching degree obtained through a simple construction—and show that going beyond limit-deterministic automata may significantly benefit reinforcement learning. 
    more » « less
  2. The robust 𝜙-regularized Markov Decision Process (RRMDP) framework focuses on designing control policies that are robust against parameter uncertainties due to mismatches between the simulator (nominal) model and real-world settings. This work makes two important contributions. First, we propose a model-free algorithm called Robust 𝜙-regularized fitted Q-iteration for learning an 𝜖-optimal robust policy that uses only the historical data collected by rolling out a behavior policy (with robust exploratory requirement) on the nominal model. To the best of our knowledge, we provide the first unified analysis for a class of 𝜙-divergences achieving robust optimal policies in high-dimensional systems of arbitrary large state space with general function approximation. Second, we introduce the hybrid robust 𝜙-regularized reinforcement learning framework to learn an optimal robust policy using both historical data and online sampling. Towards this framework, we propose a model-free algorithm called Hybrid robust Total-variation-regularized Q-iteration. To the best of our knowledge, we provide the first improved out-of-data-distribution assumption in large-scale problems of arbitrary large state space with general function approximation under the hybrid robust 𝜙-regularized reinforcement learning framework. 
    more » « less
  3. Predictive state representations (PSRs) are models of controlled non-Markov observation sequences which exhibit the same generative process governing POMDP observations without relying on an underlying latent state. In that respect, a PSR is indistinguishable from the corresponding POMDP. However, PSRs notoriously ignore the notion of rewards, which undermines the general utility of PSR models for control, planning, or reinforcement learning. Therefore, we describe a sufficient and necessary accuracy condition which determines whether a PSR is able to accurately model POMDP rewards, we show that rewards can be approximated even when the accuracy condition is not satisfied, and we find that a non-trivial number of POMDPs taken from a well-known thirdparty repository do not satisfy the accuracy condition. We propose reward-predictive state representations (R-PSRs), a generalization of PSRs which accurately models both observations and rewards, and develop value iteration for R-PSRs. We show that there is a mismatch between optimal POMDP policies and the optimal PSR policies derived from approximate rewards. On the other hand, optimal R-PSR policies perfectly match optimal POMDP policies, reconfirming R-PSRs as accurate stateless generative models of observations and rewards. 
    more » « less
  4. We propose a novel model-based reinforcement learning algorithm—Dynamics Learning and predictive control with Parameterized Actions (DLPA)—for Parameterized Action Markov Decision Processes (PAMDPs). The agent learns a parameterized-action-conditioned dynamics model and plans with a modified Model Predictive Path Integral control. We theoretically quantify the difference between the generated trajectory and the optimal trajectory during planning in terms of the value they achieved through the lens of Lipschitz Continuity. Our empirical results on several standard benchmarks show that our algorithm achieves superior sample efficiency and asymptotic performance than state-of-the-art PAMDP methods. 
    more » « less
  5. We investigate reinforcement learning for mean field control problems in discrete time, which can be viewed as Markov decision processes for a large number of exchangeable agents interacting in a mean field manner. Such problems arise, for instance when a large number of robots communicate through a central unit dispatching the optimal policy computed by minimizing the overall social cost. An approximate solution is obtained by learning the optimal policy of a generic agent interacting with the statistical distribution of the states of the other agents. We prove rigorously the convergence of exact and model-free policy gradient methods in a mean-field linear-quadratic setting. We also provide graphical evidence of the convergence based on implementations of our algorithms. 
    more » « less