skip to main content


Title: Pressure–Strain Interaction as the Energy Dissipation Estimate in Collisionless Plasma
Abstract

The dissipative mechanism in weakly collisional plasma is a topic that pervades decades of studies without a consensus solution. We compare several energy dissipation estimates based on energy transfer processes in plasma turbulence and provide justification for the pressure–strain interaction as a direct estimate of the energy dissipation rate. The global and scale-by-scale energy balances are examined in 2.5D and 3D kinetic simulations. We show that the global internal energy increase and the temperature enhancement of each species are directly tracked by the pressure–strain interaction. The incompressive part of the pressure–strain interaction dominates over its compressive part in all simulations considered. The scale-by-scale energy balance is quantified by scale filtered Vlasov–Maxwell equations, a kinetic plasma approach, and the lag dependent von Kármán–Howarth equation, an approach based on fluid models. We find that the energy balance is exactly satisfied across all scales, but the lack of a well-defined inertial range influences the distribution of the energy budget among different terms in the inertial range. Therefore, the widespread use of the Yaglom relation in estimating the dissipation rate is questionable in some cases, especially when the scale separation in the system is not clearly defined. In contrast, the pressure–strain interaction balances exactly the dissipation rate at kinetic scales regardless of the scale separation.

 
more » « less
Award ID(s):
2108834
NSF-PAR ID:
10486169
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
929
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 142
Size(s):
["Article No. 142"]
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    Three-dimensional kinetic-scale turbulence is studied numerically in the regime where electrons are strongly magnetized (the ratio of plasma species pressure to magnetic pressure is βe = 0.1 for electrons and βi = 1 for ions). Such a regime is relevant in the vicinity of the solar corona, the Earth’s magnetosheath, and other astrophysical systems. The simulations, performed using the fluid-kinetic spectral plasma solver (sps) code, demonstrate that the turbulent cascade in such regimes can reach scales smaller than the electron inertial scale, and results in the formation of electron-scale current sheets (ESCS). Statistical analysis of the geometrical properties of the detected ESCS is performed using an algorithm based on the medial axis transform. A typical half-thickness of the current sheets is found to be on the order of electron inertial length or below, while their half-length falls between the electron and ion inertial length. The pressure–strain interaction, used as a measure of energy dissipation, exhibits high intermittency, with the majority of the total energy exchange occurring in current structures occupying approximately 20 per cent of the total volume. Some of the current sheets corresponding to the largest pressure–strain interaction are found to be associated with Alfvénic electron jets and magnetic configurations typical of reconnection. These reconnection candidates represent about 1 per cent of all the current sheets identified.

     
    more » « less
  2. Abstract

    Magnetized turbulence is ubiquitous in many astrophysical and terrestrial plasmas but no universal theory exists. Even the detailed energy dynamics in magnetohydrodynamic (MHD) turbulence are still not well understood. We present a suite of subsonic, super-Alfvénic, high plasma beta MHD turbulence simulations that only vary in their dynamical range, i.e., in their separation between the large-scale forcing and dissipation scales, and their dissipation mechanism (implicit large eddy simulation, ILES, and direct numerical simulation (DNS)). Using an energy transfer analysis framework we calculate the effective numerical viscosities and resistivities, and demonstrate that all ILES calculations of MHD turbulence are resolved and correspond to an equivalent visco-resistive MHD turbulence calculation. Increasing the number of grid points used in an ILES corresponds to lowering the dissipation coefficients, i.e., larger (kinetic and magnetic) Reynolds numbers for a constant forcing scale. Independently, we use this same framework to demonstrate that—contrary to hydrodynamic turbulence—the cross-scale energy fluxes are not constant in MHD turbulence. This applies both to different mediators (such as cascade processes or magnetic tension) for a given dynamical range as well as to a dependence on the dynamical range itself, which determines the physical properties of the flow. We do not observe any indication of convergence even at the highest resolution (largest Reynolds numbers) simulation at 20483cells, calling into question whether an asymptotic regime in MHD turbulence exists, and, if so, what it looks like.

     
    more » « less
  3. null (Ed.)
    Dimensional analysis suggests that the dissipation length scale ( $\ell _{{\it\epsilon}}=u_{\star }^{3}/{\it\epsilon}$ ) is the appropriate scale for the shear-production range of the second-order streamwise structure function in neutrally stratified turbulent shear flows near solid boundaries, including smooth- and rough-wall boundary layers and shear layers above canopies (e.g. crops, forests and cities). These flows have two major characteristics in common: (i) a single velocity scale, i.e. the friction velocity ( $u_{\star }$ ) and (ii) the presence of large eddies that scale with an external length scale much larger than the local integral length scale. No assumptions are made about the local integral scale, which is shown to be proportional to $\ell _{{\it\epsilon}}$ for the scaling analysis to be consistent with Kolmogorov’s result for the inertial subrange. Here ${\it\epsilon}$ is the rate of dissipation of turbulent kinetic energy (TKE) that represents the rate of energy cascade in the inertial subrange. The scaling yields a log-law dependence of the second-order streamwise structure function on ( $r/\ell _{{\it\epsilon}}$ ), where $r$ is the streamwise spatial separation. This scaling law is confirmed by large-eddy simulation (LES) results in the roughness sublayer above a model canopy, where the imbalance between local production and dissipation of TKE is much greater than in the inertial layer of wall turbulence and the local integral scale is affected by two external length scales. Parameters estimated for the log-law dependence on ( $r/\ell _{{\it\epsilon}}$ ) are in reasonable agreement with those reported for the inertial layer of wall turbulence. This leads to two important conclusions. Firstly, the validity of the $\ell _{{\it\epsilon}}$ -scaling is extended to shear flows with a much greater imbalance between production and dissipation, indicating possible universality of the shear-production range in flows near solid boundaries. Secondly, from a modelling perspective, $\ell _{{\it\epsilon}}$ is the appropriate scale to characterize turbulence in shear flows with multiple externally imposed length scales. 
    more » « less
  4. Magnetospheres are a ubiquitous feature of magnetized bodies embedded in a plasma flow. While large planetary magnetospheres have been studied for decades by spacecraft, ion-scale “mini” magnetospheres can provide a unique environment to study kinetic-scale, collisionless plasma physics in the laboratory to help validate models of larger systems. In this work, we present preliminary experiments of ion-scale magnetospheres performed on a unique high-repetition-rate platform developed for the Large Plasma Device at the University of California, Los Angeles. The experiments utilize a high-repetition-rate laser to drive a fast plasma flow into a pulsed dipole magnetic field embedded in a uniform magnetized background plasma. 2D maps of the magnetic field with high spatial and temporal resolution are measured with magnetic flux probes to examine the evolution of magnetosphere and current density structures for a range of dipole and upstream parameters. The results are further compared to 2D particle-in-cell simulations to identify key observational signatures of the kinetic-scale structures and dynamics of the laser-driven plasma. We find that distinct 2D kinetic-scale magnetopause and diamagnetic current structures are formed at higher dipole moments, and their locations are consistent with predictions based on pressure balances and energy conservation.

     
    more » « less
  5. Abstract

    Despite decades of study of high-temperature weakly collisional plasmas, a complete understanding of how energy is transferred between particles and fields in turbulent plasmas remains elusive. Two major questions in this regard are how fluid-scale energy transfer rates, associated with turbulence, connect with kinetic-scale dissipation, and what controls the fraction of dissipation on different charged species. Although the rate of cascade has long been recognized as a limiting factor in the heating rate at kinetic scales, there has not been direct evidence correlating the heating rate with MHD-scale cascade rates. Using kinetic simulations and in situ spacecraft data, we show that the fluid-scale energy flux indeed accounts for the total energy dissipated at kinetic scales. A phenomenology, based on disruption of proton gyromotion by fluctuating electric fields that are produced in turbulence at proton scales, argues that the proton versus electron heating is controlled by the ratio of the nonlinear timescale to the proton cyclotron time and by the plasma beta. The proposed scalings are supported by the simulations and observations.

     
    more » « less