skip to main content


Title: Structural and thermal properties of ultralow thermal conductivity Ba 3 Cu 2 Sn 3 Se 10
The thermal properties of Ba 3 Cu 2 Sn 3 Se 10 were investigated by measurement of the thermal conductivity and heat capacity. The chemical bonding in this diamagnetic material was investigated using structural data from Rietveld refinement and calculated electron localization. This quaternary chalcogenide is monoclinic ( P 2 1 / c ), has a large unit cell with 72 atoms in the primitive cell, and a high local coordination environment. The Debye temperature (162 K) and average speed of sound (1666 m s −1 ) are relatively low with a very small electronic contribution to the heat capacity. Ultralow thermal conductivity (0.46 W m −1 K −1 at room temperature) is attributed to the relatively weak chemical bonding and intrinsic anharmonicity, in addition to a large unit cell. This work is part of the continuing effort to explore quaternary chalcogenides with intrinsically low thermal conductivity and identify the features that result in a low thermal conductivity.  more » « less
Award ID(s):
1748188
NSF-PAR ID:
10329576
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Dalton Transactions
Volume:
51
Issue:
16
ISSN:
1477-9226
Page Range / eLocation ID:
6220 to 6225
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Single crystals of the quaternary chalcogenide BaCuGdTe 3 were obtained by direct reaction of elements allowing for a complete investigation of the intrinsic electrical and thermal properties of this previously uninvestigated material. The structure was investigated by high-resolution single-crystal synchrotron X-ray diffraction, revealing an orthorhombic crystal structure with the space group Cmcm. Although recently identified as a semiconductor suitable for thermoelectric applications from theoretical analyses, our electrical resistivity and Seebeck coefficient measurements show metallic conduction, the latter revealing strong phonon-drag. Temperature dependent hole mobility reveals dominant acoustic phonon scattering. Heat capacity data reveal a Debye temperature of 183 K and a very high density of states at the Fermi level, the latter confirming the metallic nature of this composition. Thermal conductivity is relatively high with Umklapp processes dominating thermal transport above the Debye temperature. The findings in this work lay the foundation for a more detailed understanding of the physical properties of this and similar multinary chalcogenide materials, and is part of the continuing effort in investigating quaternary chalcogenide materials and their suitability for use in technological applications. 
    more » « less
  2. Thermoelectric materials can convert heat into electricity. They are used to generate electricity when other power sources are not available or to increase energy efficiency by recycling waste heat. The Yb 21 Mn 4 Sb 18 phase was previously shown to have good thermoelectric performance due to its large Seebeck coefficient (∼290 μV K −1 ) and low thermal conductivity (0.4 W m −1 K −1 ). These characteristics stem respectively from the unique [Mn 4 Sb 10 ] 22− subunit and the large unit cell/site disorder inherent in this phase. The solid solutions, Yb 21 Mn 4− x Cd x Sb 18 ( x = 0, 0.5, 1.0, 1.5) and Yb 21− y Ca y Mn 4 Sb 18 ( y = 3, 6, 9, 10.5) have been prepared, their structures characterized and thermoelectric properties from room temperature to 800 K measured. A detailed look into the structural disorder for the Cd and Ca solid solutions was performed using synchrotron powder X-ray diffraction and pair distribution function methods and shows that these are highly disordered structures. The substitution of Cd gives rise to more metallic behavior whereas Ca substitution results in high resistivity. As both Cd and Ca are isoelectronic substitutions, the changes in properties are attributed to changes in the electronic structure. Both solid solutions show that the thermal conductivities remain extremely low (∼0.4 W m −1 K −1 ) and that the Seebeck coefficients remain high (>200 μV K −1 ). The temperature dependence of the carrier mobility with increased Ca substitution, changing from approximately T −1 to T −0.5 , suggests that another scattering mechanism is being introduced. As the bonding changes from polar covalent with Yb to ionic for Ca, polar optical phonon scattering becomes the dominant mechanism. Experimental studies of the Cd solid solutions result in a max zT of ∼1 at 800 K and, more importantly for application purposes, a ZT avg ∼ 0.6 from 300 K to 800 K. 
    more » « less
  3.  
    more » « less
  4.  
    more » « less
  5. ZrSe3 with a quasi-one-dimensional (quasi-1D) crystal structure belongs to the transition metal trichalcogenides (TMTCs) family. Owing to its unique optical, electrical, and optoelectrical properties, ZrSe3 is promising for applications in field effect transistors, photodetectors, and thermoelectrics. Compared with extensive studies of the above-mentioned physical properties, the thermal properties of ZrSe3 have not been experimentally investigated. Here, we report the crystal growth and thermal and optical properties of ZrSe3. Millimeter-sized single crystalline ZrSe3 flakes were prepared using a chemical vapor transport method. These flakes could be exfoliated into microribbons by liquid-phase exfoliation. The transmission electron microscope studies suggested that the obtained microribbons were single crystals along the chain axis. ZrSe3 exhibited a specific heat of 0.311 J g−1 K−1 at 300 K, close to the calculated value of the Dulong–Petit limit. The fitting of low-temperature specific heat led to a Debye temperature of 110 K and an average sound velocity of 2122 m s−1. The thermal conductivity of a polycrystalline ZrSe3 sample exhibited a maximum value of 10.4 ± 1.9 W m−1 K−1 at 40 K. The thermal conductivity decreased above 40 K and reached a room-temperature value of 5.4 ± 1.3 W m−1 K−1. The Debye model fitting of the solid thermal conductivity agreed well with the experimental data below 200 K but showed a deviation at high temperatures, indicating that optical phonons could substantially contribute to thermal transport at high temperatures. The calculated phonon mean free path decreased with temperatures between 2 and 21 K. The mean free path at 2 K approached 3 μm, which was similar to the grain size of the polycrystalline sample. This work provides useful insights into the preparation and thermal properties of quasi-1D ZrSe3. 
    more » « less