skip to main content

Title: Synthesis and Photophysics of Phenylene Based Triplet Donor–Acceptor Dyads: ortho vs. para Positional Effect on Intramolecular Triplet Energy Transfer
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Photochemistry and Photobiology
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Solid‐state triplet–triplet annihilation upconversion (TTAUC) blue emission in an electroluminescence device (i.e., an organic light‐emitting diode (OLED)) is demonstrated. A conventional green fluorophore, tris‐(8‐hydroxyquinoline)aluminum (Alq3), is employed as the sensitizer that generates 75% triplet under electrical pumping for the blue triplet–triplet annihilation emitter, 9,10‐bis(2′‐naphthyl) anthracene (ADN), with the heterojunction bilayer structure. The operation lifetime is elongated both for ADN blue (4.1x) and Alq3green (34.8%) emission due to efficient use of excitons and separation of recombination and emission zone. To reduce the singlet quenching (SQ) of blue TTAUC signal by the Alq3sensitizer with lower bandgap, 1‐(2,5‐dimethyl‐4‐(1‐pyrenyl)phenyl)pyrene (DMPPP) is inserted between the Alq3and ADN as a triplet‐diffusion‐and‐singlet‐blocking layer. DMPPP exhibits triplet energy close to Alq3and higher than ADN, as well as higher singlet energy than both Alq3and ADN. It allows triplet diffusion from Alq3to ADN, but blocks the SQ of the blue TTAUC signal by Alq3. 86.1% intrinsic efficiency of TTAUC is demonstrated in this trilayer (Alq3/DMPPP/ADN) OLED.

    more » « less
  2. Optical upconversion (UC) of low energy photons into high energy photons enables solar cells to harvest photons with energies below the band gap of the absorber, reducing the transmission loss. UC based on triplet–triplet annihilation (TTA) in organic chromophores can upconvert photons from sunlight, albeit with low conversion efficiency. We utilize three energy-based criteria to assess the UC potential of TTA emitters in terms of the quantum yield (QY) and the anti-Stokes shift. The energy loss in the singlet pathway of an emitter encounter complex, where a high energy photon is emitted, determines whether a chromophore may undergo TTA. The energy loss in the triplet pathway, which is the main competing process, impacts the TTA QY. The energy difference between the lowest singlet and triplet excitation states in TTA emitters sets an upper bound for the anti-Stokes shift of TTA-UC. Using the energetic criteria evaluated by time-dependent density functional theory (TDDFT) calculations, we find that benzo[ a ]tetracene, benzo[ a ]pyrene, and their derivatives are promising TTA emitters. The energetics assessment and computer simulations could be used to efficiently discover and design more candidate high-performance TTA emitters. 
    more » « less