We provide a brief overview of what is known about quadratic grav- ity, which includes terms quadratic in the curvatures in the fundamental action. This is proposed as a renormalizeable UV completion for quantum gravity which contin- ues to use the metric as the fundamental dynamical variable. However, there are unusual field-theoretic consequences because the propagators contain quartic mo- mentum dependence. At the present stage of our understanding, quadratic gravity continues to be a viable candidate for a theory of quantum gravity.
more »
« less
Causality and gravity
A bstract We show how uncertainty in the causal structure of field theory is essentially inevitable when one includes quantum gravity. This includes the fact that lightcones are ill-defined in such a theory. This effect is small in the effective field theory regime, where it is independent of the UV completion of the theory, but grows with energy and represents an unknown uncertainty for a generic UV completion. We include details of the causality uncertainty which arises in a particular UV completion, i.e. quadratic gravity. We describe how the mechanisms uncovered in the effective field theory treatment, and some of those in quadratic gravity, could be common features of quantum gravity.
more »
« less
- Award ID(s):
- 2112800
- PAR ID:
- 10329611
- Date Published:
- Journal Name:
- Journal of High Energy Physics
- Volume:
- 2021
- Issue:
- 11
- ISSN:
- 1029-8479
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The Galileon theory is a prototypical effective field theory that incorporates the Vainshtein screening mechanism—a feature that arises in some extensions of general relativity, such as massive gravity. The Vainshtein effect requires that the theory contain higher order derivative interactions, which results in Galileons, and theories like them, failing to be technically well posed. While this is not a fundamental issue when the theory is correctly treated as an effective field theory, it nevertheless poses significant practical problems when numerically simulating this model. These problems can be tamed using a number of different approaches: introducing an active low-pass filter and/or constructing a UV completion at the level of the equations of motion, which controls the high momentum modes. These methods have been tested on cubic Galileon interactions, and have been shown to reproduce the correct low-energy behavior. Here we show how the numerical UV-completion method can be applied to quartic Galileon interactions, and present the first simulations of the quartic Galileon model using this technique. We demonstrate that our approach can probe physics in the regime of the effective field theory in which the quartic term dominates, while successfully reproducing the known results for cubic interactions. Published by the American Physical Society2024more » « less
-
The prediction of a minimal length scale by various quantum gravity candidates (such as string/M theory, Doubly Special Relativity, Loop Quantum Gravity and others) have suggested modification of Heisenberg Uncertainty Principle (HUP), resulting in the Generalized Uncertainty Principle (GUP). In this short review, we investigate the origins of the GUP and examine higher-order models, focusing on the linear plus quadratic form of the GUP. We extend the concept of minimal length to minimal angular resolution, which plays a crucial role in modifying angular momentum and its associated algebra. A comparison is made between the standard angular momentum commutator algebra and that modified by the GUP. Finally, we review its application in the hydrogen atom spectra and and discuss future endeavors.more » « less
-
A bstract We draw attention to a class of generalized global symmetries, which we call “Chern-Weil global symmetries,” that arise ubiquitously in gauge theories. The Noether currents of these Chern-Weil global symmetries are given by wedge products of gauge field strengths, such as F 2 ∧ H 3 and tr( $$ {F}_2^2 $$ F 2 2 ), and their conservation follows from Bianchi identities. As a result, they are not easy to break. However, it is widely believed that exact global symmetries are not allowed in a consistent theory of quantum gravity. As a result, any Chern-Weil global symmetry in a low-energy effective field theory must be either broken or gauged when the theory is coupled to gravity. In this paper, we explore the processes by which Chern-Weil symmetries may be broken or gauged in effective field theory and string theory. We will see that many familiar phenomena in string theory, such as axions, Chern-Simons terms, worldvolume degrees of freedom, and branes ending on or dissolving in other branes, can be interpreted as consequences of the absence of Chern-Weil symmetries in quantum gravity, suggesting that they might be general features of quantum gravity. We further discuss implications of breaking and gauging Chern-Weil symmetries for particle phenomenology and for boundary CFTs of AdS bulk theories. Chern-Weil global symmetries thus offer a unified framework for understanding many familiar aspects of quantum field theory and quantum gravity.more » « less
-
It is possible that both the classical description of spacetime and the rules of quantum field theory emerge from a more-fundamental structure of physical law. Pregeometric frameworks transfer some of the puzzles of quantum gravity to a semiclassical arena where those puzzles pose less of a challenge. However, in order to provide a satisfactory description of quantum gravity, a semiclassical description must emerge and contain in its description a macroscopic spacetime geometry, dynamical matter, and a gravitational interaction consistent with general relativity at long distances. In this essay, we argue that a framework that includes a stochastic origin for quantum field theory can provide both the emergence of classical spacetime and a quantized gravitational interaction.more » « less
An official website of the United States government

