skip to main content


Title: PAH-pollution effects on sensitive and resistant embryos: Integrating structure and function with gene expression
Polycyclic aromatic hydrocarbons (PAHs) are among the most widespread natural and anthropogenic pollutants, and some PAHs are proven developmental toxicants. We chemically characterized clean and heavily polluted sites and exposed fish embryos to PAH polluted sediment extracts during four critical developmental stages. Embryos were collected from Fundulus heteroclitus populations inhabiting the clean and heavily polluted Superfund estuary. Embryos of parents from the clean sites are sensitive to PAH pollutants while those of parents from the heavily polluted site are resistant. Chemical analysis of embryos suggests PAH accumulation and pollution-induced toxicity among sensitive embryos during development that ultimately kills all sensitive embryos before hatching, while remarkably, the resistant embryos develop normally. The adverse effects on sensitive embryos are manifested as developmental delays, reduced heart rates, and severe heart, liver, and kidney morphological abnormalities. Gene expression analysis of early somitogenesis, heartbeat initiation, late organogenesis, and pre-hatching developmental stages reveals genes whose expression significantly differs between sensitive and resistant embryo populations and helps to explain mechanisms of sensitivity and resistance to polluted environments during vertebrate animal development.  more » « less
Award ID(s):
1754437
NSF-PAR ID:
10329703
Author(s) / Creator(s):
; ; ; ; ;
Editor(s):
Cao, Yi
Date Published:
Journal Name:
PLOS ONE
Volume:
16
Issue:
4
ISSN:
1932-6203
Page Range / eLocation ID:
e0249432
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background The teleost fish Fundulus heteroclitus inhabit estuaries heavily polluted with persistent and bioaccumulative chemicals. While embryos of parents from polluted sites are remarkably resistant to toxic sediment and develop normally, embryos of parents from relatively clean estuaries, when treated with polluted sediment extracts, are developmentally delayed, displaying deformities characteristic of pollution-induced embryotoxicity. To gain insight into parental effects on sensitive and resistant phenotypes during late organogenesis, we established sensitive, resistant, and crossed embryo families using five female and five male parents from relatively clean and predominantly PAH-polluted estuaries each, measured heart rates, and quantified individual embryo expression of 179 metabolic genes. Results Pollution-induced embryotoxicity manifested as morphological deformities, significant developmental delays, and altered cardiac physiology was evident among sensitive embryos resulting from crosses between females and males from relatively clean estuaries. Significantly different heart rates among several geographically unrelated populations of sensitive, resistant, and crossed embryo families during late organogenesis and pre-hatching suggest site-specific adaptive cardiac physiology phenotypes relative to pollution exposure. Metabolic gene expression patterns (32 genes, 17.9%, at p < 0.05; 11 genes, 6.1%, at p < 0.01) among the embryo families indicate maternal pollutant deposition in the eggs and parental effects on gene expression and metabolic alterations. Conclusion Heart rate differences among sensitive, resistant, and crossed embryos is a reliable phenotype for further explorations of adaptive mechanisms. While metabolic gene expression patterns among embryo families are suggestive of parental effects on several differentially expressed genes, a definitive adaptive signature and metabolic cost of resistant phenotypes is unclear and shows unexpected sensitive-resistant crossed embryo expression profiles. Our study highlights physiological and metabolic gene expression differences during a critical embryonic stage among pollution sensitive, resistant, and crossed embryo families, which may contribute to underlying resistance mechanisms observed in natural F. heteroclitus populations living in heavily contaminated estuaries. 
    more » « less
  2. Populations of the non-migratory estuarine fish Fundulus heteroclitus inhabiting the heavily polluted New Bedford Harbour (NBH) estuary have shown inherited tolerance to local pollutants introduced to their habitats in the past 100 years. Here we examine two questions: (i) Is there pollution-driven selection on the mitochondrial genome across a fine geographical scale? and (ii) What is the pattern of migration among sites spanning a strong pollution gradient? Whole mitochondrial genomes were analysed for 133 F. heteroclitus from seven nearby collection sites: four sites along the NBH pollution cline (approx. 5 km distance), which had pollution-adapted fish, as well as one site adjacent to the pollution cline and two relatively unpolluted sites about 30 km away, which had pollution-sensitive fish. Additionally, we used microsatellite analyses to quantify genetic variation over three F. heteroclitus generations in both pollution-adapted and sensitive individuals collected from two sites at two different time points (1999/2000 and 2007/2008). Our results show no evidence for a selective sweep of mtDNA in the polluted sites. Moreover, mtDNA analyses revealed that both pollution-adapted and sensitive populations harbour similar levels of genetic diversity. We observed a high level of non-synonymous mutations in the most polluted site. This is probably associated with a reduction in N e and concomitant weakening of purifying selection, a demographic expansion following a pollution-related bottleneck or increased mutation rates. Our demographic analyses suggest that isolation by distance influences the distribution of mtDNA genetic variation between the pollution cline and the clean populations at broad spatial scales. At finer scales, population structure is patchy, and neither spatial distance, pollution concentration or pollution tolerance is a good predictor of mtDNA variation. Lastly, microsatellite analyses revealed stable population structure over the last decade. 
    more » « less
  3. Abstract

    Phenotypic variation within populations is influenced by the environment via plasticity and natural selection. How phenotypes respond to the environment can vary among traits, populations and life stages in ways that can influence fitness.

    Plastic responses during early development are particularly important because they can affect components of fitness throughout an individual's life. Consequently, how natural selection shapes developmental plasticity could be influenced by fitness consequences across different life stages. Moreover, spatial variation in selection pressures could generate differences in plastic responses among populations.

    To gain insight into sources of variation in phenotypes and survival, we used a laboratory egg incubation experiment using brown anole lizardsAnolis sagreifrom mainland (ancestral) and island (descendent) populations, combined with a mark–release–recapture experiment in the field. Our study was designed to (a) quantify the effects developmental temperature on embryo development and offspring morphology, (b) assess how developmental temperature influences offspring survival across different life stages and (c) quantify how thermal reaction norms vary among ancestral and descendant populations.

    Developmental temperature influenced offspring morphology, but thermal reaction norms of embryos showed little variation among populations. Developmental temperature influenced offspring survival, but the patterns differed between embryo and hatchling stages; the optimal temperature for embryos was about 5℃ lower than that for hatchlings. High temperatures were thermally stressful to embryos, but they reduced incubation duration and led to early hatching. In turn, earlier hatching increased the probability of survival to adulthood. Moreover, the effect of developmental temperature on hatchling survival was most pronounced for offspring that hatched late in the season.

    The difference in optimal developmental temperatures between life stages may be driven by physiological tolerance for embryos and by ecological factors for hatchlings. Moreover, the fitness consequences of the developmental environment depend on the phenology of hatching. Overall, these results highlight how the developmental environment can differentially affect fitness across life stages and show that temporal thermal heterogeneity can influence survival of embryos, but the consequences on post‐hatching stages may vary at different times of the season.

    A freePlain Language Summarycan be found within the Supporting Information of this article.

     
    more » « less
  4. Abstract

    ELT-2 is the major transcription factor (TF) required for Caenorhabditis elegans intestinal development. ELT-2 expression initiates in embryos to promote development and then persists after hatching through the larval and adult stages. Though the sites of ELT-2 binding are characterized and the transcriptional changes that result from ELT-2 depletion are known, an intestine-specific transcriptome profile spanning developmental time has been missing. We generated this dataset by performing Fluorescence Activated Cell Sorting on intestine cells at distinct developmental stages. We analyzed this dataset in conjunction with previously conducted ELT-2 studies to evaluate the role of ELT-2 in directing the intestinal gene regulatory network through development. We found that only 33% of intestine-enriched genes in the embryo were direct targets of ELT-2 but that number increased to 75% by the L3 stage. This suggests additional TFs promote intestinal transcription especially in the embryo. Furthermore, only half of ELT-2's direct target genes were dependent on ELT-2 for their proper expression levels, and an equal proportion of those responded to elt-2 depletion with over-expression as with under-expression. That is, ELT-2 can either activate or repress direct target genes. Additionally, we observed that ELT-2 repressed its own promoter, implicating new models for its autoregulation. Together, our results illustrate that ELT-2 impacts roughly 20–50% of intestine-specific genes, that ELT-2 both positively and negatively controls its direct targets, and that the current model of the intestinal regulatory network is incomplete as the factors responsible for directing the expression of many intestinal genes remain unknown.

     
    more » « less
  5. Abstract Background

    Mammalian gonadal sex is determined by the presence or absence of a Y chromosome and the subsequent production of sex hormones contributes to secondary sexual differentiation. However, sex chromosome-linked genes encoding dosage-sensitive transcription and epigenetic factors are expressed well before gonad formation and have the potential to establish sex-biased expression that persists beyond the appearance of gonadal hormones. Here, we apply a comparative bioinformatics analysis on a pair of published single-cell datasets from mouse and human during very early embryogenesis—from two-cell to pre-implantation stages—to characterize sex-specific signals and to assess the degree of conservation among early acting sex-specific genes and pathways.

    Results

    Clustering and regression analyses of gene expression across samples reveal that sex initially plays a significant role in overall gene expression patterns at the earliest stages of embryogenesis which potentially may be the byproduct of signals from male and female gametes during fertilization. Although these transcriptional sex effects rapidly diminish, sex-biased genes appear to form sex-specific protein–protein interaction networks across pre-implantation stages in both mammals providing evidence that sex-biased expression of epigenetic enzymes may establish sex-specific patterns that persist beyond pre-implantation. Non-negative matrix factorization (NMF) on male and female transcriptomes generated clusters of genes with similar expression patterns across sex and developmental stages, including post-fertilization, epigenetic, and pre-implantation ontologies conserved between mouse and human. While the fraction of sex-differentially expressed genes (sexDEGs) in early embryonic stages is similar and functional ontologies are conserved, the genes involved are generally different in mouse and human.

    Conclusions

    This comparative study uncovers much earlier than expected sex-specific signals in mouse and human embryos that pre-date hormonal signaling from the gonads. These early signals are diverged with respect to orthologs yet conserved in terms of function with important implications in the use of genetic models for sex-specific disease.

     
    more » « less