skip to main content


Title: Uptake of N2O5 by aqueous aerosol unveiled using chemically accurate many-body potentials
Abstract The reactive uptake of N 2 O 5 to aqueous aerosol is a major loss channel for nitrogen oxides in the troposphere. Despite its importance, a quantitative picture of the uptake mechanism is missing. Here we use molecular dynamics simulations with a data-driven many-body model of coupled-cluster accuracy to quantify thermodynamics and kinetics of solvation and adsorption of N 2 O 5 in water. The free energy profile highlights that N 2 O 5 is selectively adsorbed to the liquid–vapor interface and weakly solvated. Accommodation into bulk water occurs slowly, competing with evaporation upon adsorption from gas phase. Leveraging the quantitative accuracy of the model, we parameterize and solve a reaction–diffusion equation to determine hydrolysis rates consistent with experimental observations. We find a short reaction–diffusion length, indicating that the uptake is dominated by interfacial features. The parameters deduced here, including solubility, accommodation coefficient, and hydrolysis rate, afford a foundation for which to consider the reactive loss of N 2 O 5 in more complex solutions.  more » « less
Award ID(s):
1801971
NSF-PAR ID:
10329724
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Nature Communications
Volume:
13
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Nitrogen oxides are removed from the troposphere through the reactive uptake of N2O5into aqueous aerosol. This process is thought to occur within the bulk of an aerosol, through solvation and subsequent hydrolysis. However, this perspective is difficult to reconcile with field measurements and cannot be verified directly because of the fast reaction kinetics of N2O5. Here, we use molecular simulations, including reactive potentials and importance sampling, to study the uptake of N2O5into an aqueous aerosol. Rather than being mediated by the bulk, uptake is dominated by interfacial processes due to facile hydrolysis at the liquid-vapor interface and competitive reevaporation. With this molecular information, we propose an alternative interfacial reactive uptake model consistent with existing experimental observations.

     
    more » « less
  2. Massive Australian wildfires lofted smoke directly into the stratosphere in the austral summer of 2019/20. The smoke led to increases in optical extinction throughout the midlatitudes of the southern hemisphere that rivalled substantial volcanic perturbations. Previous studies have assumed that the smoke became coated with sulfuric acid and water and would deplete the ozone layer through heterogeneous chemistry on those surfaces, as is routinely observed following volcanic enhancements of the stratospheric sulfate layer. Here, observations of extinction and reactive nitrogen species from multiple independent satellites that sampled the smoke region are compared to one another and to model calculations. The data display a strong decrease in reactive nitrogen concentrations with increased aerosol extinction in the stratosphere, which is a known fingerprint for key heterogeneous chemistry on sulfate/H 2 O particles (specifically the hydrolysis of N 2 O 5 to form HNO 3 ). This chemical shift affects not only reactive nitrogen but also chlorine and reactive hydrogen species and is expected to cause midlatitude ozone layer depletion. Comparison of the model ozone to observations suggests that N 2 O 5 hydrolysis contributed to reduced ozone, but additional chemical and/or dynamical processes are also important. These findings suggest that if wildfire smoke injection into the stratosphere increases sufficiently in frequency and magnitude as the world warms due to climate change, ozone recovery under the Montreal Protocol could be impeded, at least sporadically. Modeled austral midlatitude total ozone loss was about 1% in March 2020, which is significant compared to expected ozone recovery of about 1% per decade. 
    more » « less
  3. Abstract

    Nitryl chloride (ClNO2) plays an important role in the budget and distribution of tropospheric oxidants, halogens, and reactive nitrogen species. ClNO2is formed from the heterogeneous uptake and reaction of dinitrogen pentoxide (N2O5) on chloride‐containing aerosol, with a production yield,ϕ(ClNO2), defined as the moles of ClNO2produced relative to N2O5lost. Theϕ(ClNO2) has been increasingly incorporated into 3‐D chemical models where it is parameterized based on laboratory‐derived kinetics and currently accepted aqueous‐phase formation mechanism. This parameterization modelsϕ(ClNO2) as a function of the aerosol chloride to water molar ratio. Box model simulations of night flights during the 2015 Wintertime INvestigation of Transport, Emissions, and Reactivity (WINTER) aircraft campaign derived 3,425 individualϕ(ClNO2) values with a median of 0.138 and range of 0.003 to 1. Comparison of the box model median to those predicted by two other field‐basedϕ(ClNO2) derivation methods agreed within a factor of 1.3, within the uncertainties of each method. In contrast, the box model median was 75–84% lower than predictions from the laboratory‐based parameterization (i.e., [parameterization − box model]/parameterization). An evaluation of factors influencing this difference reveals a positive dependence ofϕ(ClNO2) on aerosol water, opposite to the currently parameterized trend. Additional factors may include aqueous‐phase competition reactions for the nitronium ion intermediate and/or direct ClNO2loss mechanisms. Further laboratory studies of ClNO2formation and the impacts of aerosol water, sulfate, organics, and ClNO2aqueous‐phase reactions are required to elucidate and quantify these processes on ambient aerosol, critical for the development of a robustϕ(ClNO2) parameterization.

     
    more » « less
  4. We examined the reactive uptake of dinitrogen pentoxide (N 2 O 5 ) to authentic biomass-burning aerosol (BBA) using a small chamber reservoir in combination with an entrained aerosol flow tube. BBA was generated from four different fuel types and the reactivity of N 2 O 5 was probed from 30 to 70% relative humidity (RH). The N 2 O 5 reactive uptake coefficient, γ (N 2 O 5 ), depended upon RH, fuel type, and to a lesser degree on aerosol chloride mass fractions. The γ (N 2 O 5 ) ranged from 2.0 (±0.4) ×10 −3 on black needlerush derived BBA at 30% RH to 6.0 (±0.6) ×10 −3 on wiregrass derived BBA at 65% RH. Major N 2 O 5 reaction products were observed including gaseous ClNO 2 and HNO 3 and particulate nitrate, and used to create a reactive nitrogen budget. Black needlerush BBA had the most particulate chloride, and the only measured ClNO 2 yield > 1%. The ClNO 2 yield on black needlerush decayed from an initial value of ∼100% to ∼30% over the course of the burn experiment, suggesting a depletion of BBA chloride over time. Black needlerush was also the only fuel for which the reactive nitrogen budget indicated other N-containing products were generated. Generally, the results suggest limited chloride availability for heterogeneous reaction for BBA in the RH range probed here, including BBA with chloride mass fractions on the higher end of previously reported values (∼17–34%). Though less than fresh sea spray aerosol, ∼50%. We use these measured quantities to discuss the implications for nocturnal aerosol nitrate formation, the chemical fate of N 2 O 5 (g), and the availability of particulate chloride for activation in biomass burning plumes. 
    more » « less
  5. null (Ed.)
    Using water as a hydrogen source is a promising strategy for alternative hydrogen peroxide (H 2 O 2 ) synthesis. By a series of ab initio molecular dynamics (AIMD) simulations and reactive molecular dynamics (RxMD) calculations, fundamental details have been revealed regarding how liquid water interacts with oxygen on a metal-free carbon nitride catalyst, and the two-step reaction mechanism of H 2 O 2 synthesis. Metal-free porous graphitic carbon nitride (g-C 5 N 2 ) catalysts are also systematically screened by using a thermodynamics approach through the ab initio density functional theory (DFT) method. Key results include: (a) pristine g-C 5 N 2 is most active to catalyze the H 2 O/O 2 reaction and produce H 2 O 2 ; (b) the adsorption and activation of water at unsaturated carbon sites of g-C 5 N 2 are critical to initiate the H 2 O/O 2 reaction, producing HOO* intermediates; (c) interfacial free water and adsorbed water at g-C 5 N 2 form a synergetic proton transfer cluster to promote HOO* intermediates to form H 2 O 2 . To the best of our knowledge, this work presents long-needed theoretical details of direct H 2 O 2 synthesis via the water/oxygen system, which can guide further optimization of carbon-based catalysts for oxygen reduction reactions. 
    more » « less